• Title/Summary/Keyword: Shovel-truck haulage system

Search Result 2, Processing Time 0.014 seconds

Development of a Windows-based Simulation Program for Selecting Equipments in Open-pit Shovel-Truck Haulage Systems (노천광산 쇼밸-트럭 운반 시스템의 장비선택을 위한 Windows용 시뮬레이션 프로그램 개발)

  • Park, Sebeom;Lee, Sungjae;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study developed a Windows-based simulation program for selecting equipments in open-pit shovel-truck haulage systems. Visual Basic.NET 2012 was used to develop the graphic user interface (GUI) and the GPSS/H simulation language was utilized to implement the simulation engine of program. When users establish simulation parameters through the GUI, the program calls the simulation engine to perform the simulations repeatedly. Then, it finds the optimal fleet of equipments required for operating the open-pit shovel-truck haulage systems efficiently. Application of the program to the Ssangyong open-pit limestone mine, Gangwon-do, Korea, showed that the daily average profit of shovel-truck haulage operation can be maximized (i.e. 88,552 USD) under following conditions: (a) 4 trucks are dispatched into each loading point and (b) a crusher with capacity of 1,500tph is utilized.

Simulation of Shovel-Truck Haulage Systems in Open-pit Mines by Considering Breakdown of Trucks and Crusher Capacity (트럭 고장 및 파쇄기 처리용량을 고려한 노천광산 쇼밸-트럭 운반 시뮬레이션)

  • Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents a case study that performed simulations on shovel-truck haulage systems in an open-pit mine by considering truck's breakdown and crusher's capacity. The SSangyoung limestone open-pit mine in Korea was selected as a study area and investigated to design the simulation algorithms. The GPSS/H simulation language is used to implement the simulation algorithms as a console application(simulator). The values of input parameters for simulator were measured by field investigation in the study area. The simulation results showed that 7 trucks can maximize the daily profit of haulage operations(i.e., 73,775 USD) when considers the frequency of trucks' breakdown as 1/40 $hour^{-1}$. In addition, the crusher capacity of 1300 tph is required to improve the efficiency of shovel-truck haulage systems in the study area.