• Title/Summary/Keyword: Shotcrete lining

Search Result 106, Processing Time 0.027 seconds

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

Evaluation of an applicability of lattice girders for the tunnel support (터널지보재로서 격자지보(Lattice Girder)의 현장적용성 평가 연구)

  • 문홍득;이성원;배규진
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.122-130
    • /
    • 1996
  • Generally the NATM technique uses shotcrete, rock bolts, H-beam steel ribs, and concrete lining for the tunnel support in Korea. Among them, H-beam steel ribs are extremely heavy and difficult for workers to handle. Therefore, especially in Europe, lattice girders are being used instead of H-beam steel ribs for tunnel support. Lattice girders have basically the same function as H-beam steel ribs in tunnelling. The main advantages of using lattice girders compared to H-beam steel rib supports are as follows: 1) lattice girders have relatively a low weight enough to be easily lifted and installed by labors and 2) they create a more effective bond with the shotcrete. The purpose of this study is to evaluate the effectiveness and applicability of lattice girders compared to H-beam steel ribs used in construction tunnel sites and to show that lattice girders can be adequately applied in domestic tunnel construction sites as a new tunnel support system.

  • PDF

An Experimental Study on the Performance Evaluation of Structural Synthetic Fiber-Reinforced Shotcrete (구조용 합성섬유보강 숏크리트의 성능평가에 관한 실험연구)

  • 오병환;최승원;박대균;한일영;김방래;신용석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.373-378
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. Now types of synthetic fibers have been developed in this study. The purpose of this study is to explore the strength and toughness characteristic of the concrete reinforced with synthetic fibers developed in this study. The result were compared with those of steel fiber reinforced concrete. It is seen that the performance of synthetic fiber reinforced concrete is good as much as that of steel fiber reinforced concrete, while the synthetic fibers have advantages in corrsion resistance and economy.

  • PDF

Evaluation of the Field Application of the Ready-mixed Shotcrete using the Synthetic Fiber (합성섬유를 혼입한 레디믹스트 숏크리트의 현장적용성 평가)

  • Choi, Hee-Sup;Nam, Kwan-Woo;Nam, Gi-Mok;Seo, Sin-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1536-1539
    • /
    • 2009
  • In this paper, The Ready-mixed Shotcrete which Factory with automatic production system is made Materials using synthetic fiber is evaluated the field application. Result of whole test, synthetic fiber(PP, PVA) is indicated almost equal result of steel fiber by rebound rate, compressive strength and bending test. especially, PP fiber(40mm, 12kg) is showed that bending strength and toughness is better than steel fiber, also I reason in that field application of synthetic fiber(PP, PVA) is proved.

  • PDF

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.

Dynamic Behaviors of a Corrugated Steel Tunnel Lining System due to Wind Loads by Passing Vehicles according to the Boundary Conditions (구조물 경계조건에 따른 파형강판 터널라이닝의 풍하중에 대한 동적 거동분석)

  • Mha, Ho-Seong;Cho, Kwang-Il;Yoo, Sung-Heum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • Dynamic behaviors of a corrugated steel plate tunnel lining system are examined under wind loads due to passing vehicles. Applied wind loads are simulated by applying the time functions as a vehicle moves through the tunnel. Wind loads are described by the pressure and suction as a vehicle arrives and leaves target positions in the tunnel. The tunnel lining is modeled using the simplified shell elements that retain the characteristics of the corrugated shapes. The displacements of the tunnel lining are evaluated under various conditions regarding wind velocity and the passing vehicles. The responses are found to increase as the vehicle velocity and wind velocity increase. A maximum displacement of 25mm occurs when two vehicles are crossing at the speed of 120km/h. A row of vehicles running consecutively minimally affects the dynamic responses with less than 2.5% of the dynamic responses enlarged and attributed to one running vehicle. It should be noted that the dynamic responses of the tunnel lining should be considered when there is no shotcrete applied.

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF

Performance Improvement and Durability Evaluation of Shotcrete for Permanent Tunnel Support (터널 영구 지보재로서의 숏크리트 고성능화 및 내구성 평가에 관한 연구)

  • Lee, Sang-Pil;Ryu, Jong-Hyun;Lee, Sang-Don;Jeon, Seok-Won;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.266-284
    • /
    • 2007
  • Recently, many efforts have been made to construct the first unlined tunnel, without in-situ concrete lining, in Korea. However, the lack of reliability in the performance of shotcrete as permanent tunnel support prevented from its realization. Shotcrete has been regarded to have significant problems in field application and long term performance because of unsatisfactory strength level and durability compared to those of European countries. In this study, the high strength shotcrete satisfying compressive strength over 40 MPa and flexural strength over 4.5 MPa was developed from optimized mix design. The type of accelerators and the amount of silica fume were selected as the main factors in mixing process and the analyses were carried out up to the elapsed time of 2 years. In order to evaluate the short term durability of shotcrete, an array of laboratory test consisting of freeze-thaw, carbonation chloride penetration and permeability test was performed. For long-term durability tests, specimens have been put in an operated highway tunnel to expose them to the similar environment when they are actually used as an unlined tunnel support. From the strength and durability tests, it was found that only alkali-free based accelerator satisfied the target strength of this study and also, the developed shotcrete showed very high performance in its durability.

Effects of Earthquake on Tunnel Stability (지진이 터널 안정에 미치는 영향)

  • 박남서
    • Explosives and Blasting
    • /
    • v.14 no.2
    • /
    • pp.71-80
    • /
    • 1996
  • A series of nurmerical analysse for the earhtquake of Iran railway tunnles under construction by NATM(New Astrian Tunnelling Method) were careid out throuth a pseudo-dynamic analyses techique used in a FFM computer program, DWTAP(Daewoo Tunnel Analysis Program), and the results are described in the paper. The analyses were performErl for two case;one is for the primary supports and the other is for the rompletEd permanent roncrete lining. The horizontal and verical groW1d accelerations for the design were estimatEd as 0.34 g and 0.23 g, respectively based on the historical reismic rerords in the proj3et area and the empirical equations. The results show that the turmel would be safe W1der the anticipitOO earthquake motion with the permanent roncrete lining, but some minor cracks rnigt be developErl in the primary shotcrete lining without any significant structural damages.

  • PDF

A Study on the Mechanical Characteristics of Tunnel Structures and Ground Behavior by Synthetic Analysis Method with Tunnel Monitoring Results used (터널의 계측결과 종합분석에 의한 지반의 거동 및 터널 구조체의 역학적 특성 연구)

  • Woo, Jong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.115-124
    • /
    • 2003
  • In this study, the relationships between the displacement and stress of the tunnel using various analysis methods were compared with monitoring results carried out during construction and maintenance monitoring. The behavior of tunnel were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel lining. With the results of simplified monitoring observed in top heading and bench excavation tunnel, it is confirmed that the crown settlement is larger than the surface settlement. it is interesting to note that the crown settlement and the crown shotcrete lining stress are widely used monitoring items for the back analysis. It is analyzed that the residual water pressure applied in the drainage type tunnel is reasonable.