• Title/Summary/Keyword: Shot-Peening

Search Result 187, Processing Time 0.022 seconds

A Study on the Reliability Evaluation of Shot Peened Aluminium Alloy Using Accelerated Life Test (가속수명시험을 이용한 쇼트피닝가공 알루미늄 합금의 신뢰성 평가에 관한 연구)

  • Nam, Ji-Hun;Kang, Min-Woo;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1534-1542
    • /
    • 2006
  • In this paper, the concept of accelerated life test, which is a popular research field nowadays, is applied to the shot peened material. To predict the efficient and exact room temperature fatigue characteristics from the high temperature fatigue data, the adequate accelerated model is investigated. Ono type rotary bending fatigue tester and high temperature chamber were used for the experiment. Room temperature fatigue lives were predicted by applying accelerated models and doing reliability evaluation. Room temperature fatigue tests were accomplished to check the effectiveness of predicted data and the adequate accelerated life test models were presented by considering errors. Experimental result using Arrhenius model, fatigue limit obtain almost 5.45% of error, inverse power law has about 1.36% of error, so we found that inverse power law is applied well to temperature-life relative of shot peened material.

Prediction of Velocity of Shot Ball with Blade Shapes based on Discrete Element Analysis (이산요소해석에 기초한 블레이드 형상에 따른 숏볼의 투사속도 예측)

  • Kim, Tae-Hyung;Lee, Seung-Ho;Jung, Chan-Gi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.844-851
    • /
    • 2018
  • In this study, the regression equation was suggested to predict of the shot ball velocity according to blade shapes based on discrete element (DE) analysis. First, the flat type blade DE model was used in the analysis, the validity of the DE model was verified by giving that the velocity of the shot ball almost equal to the theoretical one. Next, the DE analyses for curved and combined blade models was accomplished, and their analytical velocities of shot ball were compared with the theoretical one. The velocity of combined blade model was greatest. From this, the regression equation for velocity of shot ball according to the blade shape based on the DE analysis was derived. Additionally, the wind speed measurement experiment was carried out, and the experimental result and analytical one were the same. Ultimately, it was confirmed that the prediction method of the velocity of shot ball based on DE analysis was effective.

A Study on The Effect of High Temperature on Fatigue Life of The Vehicle Spring Steel (쇼트피이닝 가공된 차량용 스프링강의 피로수명에 미치는 고온의 영향)

  • Park, Keyoung-Dong;Ha, Keyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, high temperature experiment. And ire got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\;100^{\circ}C,\;150^{\circ}C$ and $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Region I) and stress intensity (actor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A Study on the Fatigue Strength Improvement of Welded Parts of SS400 Using the Shot Peening and PWHT Technique for Subway Cars (쇼트피닝과 후열처리에 의한 전동차용 SS400 용접부 피로강도 개선연구)

  • Kim, Jin-Hern;Kim, Hyun-Gyu;Goo, Byeong-Choon;Cheong, Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.65-70
    • /
    • 2007
  • Welding is the most commonly used method to produce bogie and carbody of Electrical Multiple Units(EMU), because it increases the strength and lowers the weight of EMU. Since bogies are constantly exposed to repeated reacting load during acceleration and deceleration, it is also true that crack normally occurs at welding parts. In this study, we have investigated the fatigue strength of SS400 on welded parts in order to find efficiency of treatment after welding by shot peening and Post-Weld heat treatment(PWHT) with butt welded specimens. The results of fatigue test indicate that the measurement of base material specimen is 236MPa, welded specimen is 132MPa and the specimen of PWHT is 107MPa approximately. We concluded that the measurement of welded specimen and PWHT is approximately 44 and 54 percents lower than the base material specimen, respectively. Another finding is that the peened specimen is approximately 23 and 61 percents higher than the base material specimen in terms of the fatigue in strength of specimens.

  • PDF

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.