• Title/Summary/Keyword: Shot velocity

Search Result 103, Processing Time 0.023 seconds

Three dimensional Kinematic Analysis of Sweep Shot in Ice Hockey (아이스하키 스위프 샷(Sweep shot) 동작의 3차원 운동학적 분석)

  • Choi, Ji-Young;Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.49-59
    • /
    • 2006
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. 1. In three dimensional linear velocity of blade the Y axis showed maximum linear velocity almost impact, the X axis(horizontal direction) and the Z axis(vertical direction) maximum linear velocity of blade did not show at impact but after impact this will resulted influence upon hitting puck. 2. The resultant linear velocity of each segment of right arm showed maximum resultant linear velocity at impact. It could be suggest that the right arm swing patterns is kind of push-like movement. therefore the upper arm is the most important role in the right arm swing. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed flexion all around the wrist shot. The angular displacement of trunk in internal-external rotation showed internal rotation angle at the backswing top and and increased the angle after the impact. while there is no significant adduction-abduction. 4. The three dimensional anatomical angular displacement of trunk showed most important role in wrist shot. and is follwed by shoulder joints, in addition the movement of elbow/wrist joints showed least to the shot. this study result showed upperlimb of left is more important role than upperlimb of right.

Characterization of Residual Stress in Shot Peened Al 7075 Alloy Using Surface Acoustic Wave (표면파를 이용한 쇼트피닝된 Al 7075 합금의 잔류응력 평가)

  • Kim, Chung-Seok;Kim, Yong-Kwon;Park, Ik-Keun;Kwun, Sook-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.291-296
    • /
    • 2006
  • The residual stress in shot-peened Al 7075 alloy was evaluated using surface acoustic wave (SAW). Shot peening was conducted to produce a variation in the residual stress with the depth below the surface under a shot velocity of 30 m/s. The SAW velocity was measured from the V(z) curve using a scanning acoustic microscopy (SAM). The Vickers hardness profile from the surface showed a significant work hardening near the surface layer with a thickness of about 0.25 mm. As the residual stress became more compressive, the SAW velocity increased, whereas as the residual stress became more tensile, the SAW velocity decreased. The variation in the SAW velocity through the shot peened surface layer was in good agreement with the distribution of the residual stress measured by X-ray diffraction technique.

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

Effect of Casting Thickness and Plunger Velocity on Porosity in Al Plate Diecasting (Al 박육 다이캐스팅 주물에서 기포결함에 미치는 주물두께, 사출속도의 영향)

  • Kang, Ho-Jeong;Park, Jin-Young;Kim, Eok-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.4
    • /
    • pp.80-87
    • /
    • 2015
  • The Al die casting process has been widely used in the manufacturing of automotive parts when the process requires near-net shape casting and a high productive rate. However, porosity arises in the casting process, and this hampers the wider use of this method for the creation of high-durability automotive components. The porosity can be controlled by the shot condition, but, it is critical to set the shot condition in the sleeve, and it remains difficult to optimize the shot condition to avoid air entrapment efficiently. In this study, the 4.5 mm, 2.0 mm plate die castings were fabricated under various shot conditions, such as plunger velocities of 0.7 m/s ~ 3.0 m/s and fast shot set points of the cavity of -25%, 0%, 25%, and 50%. The mold filling behavior of Al melts in the cavity was analyzed by a numerical method. Also, according to the shot conditions, the results of numerical analyses were compared to those of die-casting experiments. The porosity levels of the plate castings were analyzed by X-ray CT images and by density and microstructural analyses. The effects of the porosity on the mechanical properties were analyzed by tensile tests and hardness tests. The simulation results are in good general agreements with the die-casting experimental results. When plunger velocity and fast shot set point are 1.0 m/s and cavity 25% position, castings had optimum condition for good mechanical properties and a low level of porosity.

A Study on The Effect of Compressive Residual Stress on fatigue Crack Propagation Behavior of Spying Steel (스프링강의 피로크랙 진전거동에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper, the effect of the compressive residual stresses which were obtained under the various shot velocities of shot balls on the fatigue behaviors of a spring steel, were investigated. The examination of CT specimen test were executed with the materials(JISG SUP9) which are being commonly used for the springs of automotive vehicles. As a result, the optimal shot velocity of shot balls were acquired considering the peak values of the compressive residual stresses on the surface of specimen and effect on the speed of the fatigue crack propagation da/dN in stage II and the threshold stress intensity factor range Δ$K_{th}$ in stage I. Also the material constant C and the crack propagation index m in the formula of paris law da/dN= C $({\Delta}K^m)$ were suggested in this work to estimate the dependency on the shot velocity.

A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로거동에 관한 연구)

  • Park, Kyoung-Dong;Ha, Kyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Finite Element Analysis for Shot Blasting Process Optimization of Stainless Steel (유한요소해석을 이용한 스테인리스 스틸의 쇼트 블라스팅 공정 최적화)

  • Song, Seung Youp;Park, Junyoung;Kim, Jun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • A shot blasting process is to improve the surface quality of stainless steels. The process is similar to a well-known shot peening that is used to strengthen the surface via the residual stress. In the shot blasting process, it is important to decide many parameters, such as the size, incident angle and velocity of shot balls, to effectively get rid of the iron oxide on the surface of stainless steels. In this study, the simulation of the shot blasting process is carried out by a finite element software, which can help to find out the optimal design parameters to cause the delamination of the iron oxide from the stainless steel substrate. The results obtained are also compared to those of the discrete element method to verify them.

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

Distribution Characteristics of Residual Compressive Stresses Induced by Shot-peening in the Aircraft Structural Material (항공기 구조용 재료의 쇼트피닝에 의한 압축 잔류응력의 분포 특성)

  • 이환우;박영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.149-157
    • /
    • 2004
  • Residual stresses can have a significant influence on the fatigue lives of structural engineering components. For the accurate assessment of fatigue lifetimes a detailed knowledge of the residual stress profile is required. Significant advances have been made in recent years fur obtaining accurate and reliable determinations of residual stress distributions. These include both experimental and numerical methods. The purpose of this study is to simulate peening process with the help of the finite element method in order to predict the magnitude and distribution of the residual stresses in accordance with the parameters, which are, e.g. shot velocity, shot diameter, shot impact angle, shot shape, distance between two impinging shots, and material parameters.

The Kinematic Analysis of Gliding Type and Delivery Phase in Each Trails during Shot-Putting - Focusing on Lee, Hyung-Keun, Player in Men's High School Youth Group - (고등부 남자 포환던지기 선수의 시기 별 글라이드 유형과 딜리버리 국면의 운동학적 분석 - 고등부 이형근 선수를 중심으로 -)

  • Kim, Tae-Sam;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • The purpose of this study was to provide information about kinematic variables of the gliding and delivery motion of Hyung-Keun Lee, a high school shot putter who was ranked 1st at the 2011 National Sports Festivals. Three-Dimensional motion analysis using a system of 4 video cameras at a sampling frequency of 60 Hz was conducted during shot-putting events at the 2011 National Sports Festivals. During the gliding and delivery phase of the player the results showed following characteristics; 1) The gliding technique types of the player appeared to be the short-long technique as the gliding and stance length ratio were $42.3{\pm}3.87$ % and $57.7{\pm}3.87$ %, respectively. In addition, the trajectory of shots during the gliding and delivery phase showed different trajectory patterns with "S-shaped" type of elite players due to the deviation from a central axis of the APSS (athletic-plus shot system). 2) The horizontal velocity of COG made from gliding should maintain the velocity during transition and release phase, but the player showed a small momentum for a gradual decrease of velocity. 3) Therefore, the player requires to adjust an appropriate ratio between gliding and stance length with a strong muscle power at the trunk, throwing arm, and the lower extremity during gliding and delivery phase.