Shot change detection is an important technique for effective management of video data, so detection scheme requires adaptive detection techniques to be used actually in various video. In this paper, we propose an adaptive shot change detection algorithm using the mean of feature value on variable reference blocks. Our algorithm determines shot change detection by defining adaptive threshold values with the feature value extracted from video frames and comparing the feature value and the threshold value. We obtained better detection ratio than the conventional methods maximally by 15% in the experiment with the same test sequence. We also had good detection ratio for other several methods of feature extraction and could see real-time operation of shot change detection in the hardware platform with low performance was possible by implementing it in TVUS model of HOMECAST Company. Thus, our algorithm in the paper can be useful in PMP or other portable players.
장면 전환 검출은 비디오 데이터의 효율적인 관리를 위한 주요 기술로서 다양한 영상에 실제적으로 적용하기 위해서 적응적인 검출 기술이 요구된다. 본 논문에서는 가변 참조 구간의 평균 특징값을 이용한 적응적인 장면 전환 검출 알고리즘을 제안한다. 제안하는 알고리즘은 비디오 프레임에서 추출한 특징값들 중에서 가변 구간 동안의 평균 특징값을 참조하여 적응적 임계값을 정의하고, 특징값과 임계값을 비교하여 장면 전환 유무를 판단한다. 동일한 비디오 데이터를 사용한 실험을 통해서 제안한 방법이 기존의 방법들보다 검출 결과가 최대 15%이상 향상되었음을 확인하였다. 제안한 방법은 여러 가지 특징 추출 방법에 대해서도 좋은 성능을 나타내었으며, 홈캐스트사의 TVUS 모델에서 구현함으로써 하드웨어 성능이 낮은 플랫폼에서 실시간 장면 전환 검출이 가능한 것을 확인하였다. 따라서 제안하는 방법은 휴대용 미디어 장치나 유사 휴대형기기에서 유용하게 사용될 수 있을 것이다.
장면 전환 검출 기술은 대용량 비디오 데이터의 효율적인 관리를 위한 주요 기술로서, 다양한 비디오 데이터에 적용하기 위한 적응적인 검출 알고리즘이 요구된다. 본 논문에서는 확장 참조 구간 동안의 프레임들의 히스토그램 평균값을 이용한 적응적인 장면 전환 검출 알고리즘을 제안한다. 제안하는 방법은 히스토그램을 이용해서 프레임들의 특징값을 계산하고, 확장 참조 구간 동안의 프레임들의 히스토그램 평균값을 이용해서 임계값을 정의하여 특징값과 임계값의 비교를 통해서 장면 전환 발생 여부를 판단한다. 동일한 비디오 데이터를 사용한 실험을 통해서 제안하는 방법이 기존의 방법들보다 검출 정확도에서 최대 15% 이상 향상되었음을 확인하였다. Homecast사의 TVUS HM-900 PLUS 모델의 휴대용 멀티미디어 재생기에서 제안하는 방법을 구현하여 PC보다 성능이 낮은 하드웨어 플랫폼에서도 실시간으로 장면 전환 검출이 동작하는 것을 확인하였다. 본 논문에서 제안하는 방법은 휴대용 미디어 재생 장치나 휴대 전화 등 비교적 낮은 하드웨어 플랫폼에서 유용하게 사용될 수 있다.
The increase of video data makes the demand of efficient retrieval, storing, and browsing technologies necessary. In this paper, a video segmentation method (scene change detection method, or shot boundary detection method) for the development of such systems is proposed. For abrupt cut detection, inter-frame similarities are computed using luminance and edge histograms and a cut is declared when the similarities are under th predetermined threshold values. A gradual scene change detection is based on the similarities between the current frame and the previous shot boundary frame. A correlation method is used to obtain universal threshold values, which are applied to various video data. Experimental results show that propose method provides 90% precision and 98% recall rates for abrupt cut, and 59% precision and 79% recall rates for gradual change.
본 논문에서는 다수의 특징과 이진 분류 트리를 이용하여 장면 전환점(shot change)을 검출하는 향상된 방식을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 본 논문에서는 단일 특징보다는 상호 보완 관계를 갖는 다수의 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 그리고 장면 전환점의 분류를 위해서는 이진 분류 트리(binary classification tree)를 이용한다. 이 분류 결과에 따라 장면 전환점 검출에 사용될 중요한 특징들을 선별하고, 각 특징들의 최적 임계값을 구한다. 또한, 분류 성능을 확인하기 위해 교차검증(cross-validation)과 드롭 케이스(drop-case)를 수행하였다. 실험 결과, 제안된 기법이 단일 특징들만을 사용한 기존의 방법들 보다 El(Evaluated Index, 성능평가지수)에서 평균 2%의 성능이 향상됨을 알 수 있었다.
This study attempts to detect a shot boundary in films(or dramas) based on the length of a sequence. As films or dramas use scene change effects a lot, the issues regarding the effects are more diverse than those used in surveillance cameras, sports videos, medical care and security. Visual techniques used in films are focused on the human sense of aesthetic therefore, it is difficult to solve the errors in shot boundary detection with the method employed in surveillance cameras. In order to define the errors arisen from the scene change effects between the images and resolve those issues, the mixed algorithm based upon color histogram, edge histogram, and optical flow was implemented. The shot boundary data from this study will be used when analysing the configuration of meaningful shots in sequences in the future.
In this paper, we propose an efficient method to detect shot changes in compressed MPEG video data by using reference features among video frames. The reference features among video frames imply the similarities among adjacent frames by prediction coded type of each frame. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. And the shot change detection algorithm is improved by using Fuzzy c-means (FCM) clustering algorithm. The FCM clustering algorithm uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
This paper proposes the parallel design of a shot change detection algorithm using frame segmentation and moving blocks. In the proposed approach, the high parallel processing components, such as frame histogram calculation, block histogram calculation, Otsu threshold setting function, frame moving operation, and block histogram comparison, are designed in parallel for NVIDIA GPU. In order to minimize memory access delay time and guarantee fast computation, the output of a GPU kernel becomes the input data of another kernel in a pipeline way using the shared memory of GPU. In addition, the optimal sizes of CUDA processing blocks and threads are estimated through the prior experiments. In the experimental test of the proposed shot change detection algorithm, the detection rate of the GPU based parallel algorithm is the same as that of the CPU based algorithm, but the average of processing time speeds up about 6~8 times.
본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.