• 제목/요약/키워드: Short-time energy

검색결과 764건 처리시간 0.028초

Simulations for the cesium dynamics of the RF-driven prototype ion source for CRAFT N-NBI

  • Yalong Yang;Yong Wu;Lizhen Liang;Jianglong Wei;Rui Zhang;Yahong Xie;Wei Liu;Chundong Hu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1145-1152
    • /
    • 2024
  • To realize an initial objective of the negative ion-based neutral beam injection (N-NBI) at the Comprehensive Research Facility for Fusion Technology (CRAFT) test facility, which targets an H0 beam power of 2 MW at an energy of 200-400 keV and a pulse duration of 100 s, it is crucial to study the cesium dynamics of the negative ion source. Here a numerical simulation program CSFC3D is developed and applied to simulate the distribution and time dynamics of cesium during short pulses. The calculations show that most of the cesium on the plasma grid (PG) area originates from the release of cesium that is accumulated within the ion source in the plasma phase. Increasing the wall temperature reduces the loss of cesium on the wall of the ion source. Furthermore, the thickness of the cesium monolayer is directly influenced by the PG temperature. Both simulated and experimental results demonstrate that maintaining the PG temperature between 180 ℃ and 200 ℃ is essential for enhancing the performance of the ion source and optimizing the cesium behavior.

재 제조 태양광모듈의 내구성능 평가 연구 (Durability Evaluation Study of Re-manufactured Photovoltaic Modules)

  • 김경수
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

시계열 자료를 이용한 도시가스의 수요함수 추정 (Estimation of city gas demand function using time series data)

  • 이승재;어승섭;유승훈
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.370-375
    • /
    • 2013
  • 본 연구에서는 1981년부터 2012년까지의 시계열 자료를 이용하여 도시가스의 수요함수를 추정하고자 한다. 도시가스의 수요함수는 수용가의 도시가스 수요행태에 대한 정보를 제공하여 가격과 같은 주요 정책변수의 효과를 사전적으로 진단하는 데, 그리고 수요예측을 하는 데 유용하게 활용된다. 시계열 데이터를 효과적으로 활용하기 위하여 내생시차변수 모형을 활용하였고, 수요함수의 모수에 대한 강건한 추정치를 얻기 위해 최소자승법 추정법을 사용하였다. 단기 가격탄력성 및 소득탄력성은 각각 -0.522 및 0.874로 추정되었으며 유의수준 1%에서 통계적으로 유의하였다. 단기 가격탄력성은 가격에 비탄력적인 도시가스수요의 특징을 보여주고 있으며, 단기 소득탄력성 역시 비탄력적으로 추정되어 소득 증감에 따라 도시가스의 수요가 크게 변화지 않음을 알 수 있다. 반면, 장기 가격탄력성 및 소득탄력성은 각각 -2.155 및 3.607로 나타나 탄력적임을 알 수 있다.

클라우드 컴퓨팅 환경에 적합한 그룹 키 관리 프로토콜 (Group key management protocol adopt to cloud computing environment)

  • 김용태;박길철
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.237-242
    • /
    • 2014
  • IT 서비스 및 컴퓨팅 자원을 기반으로 인터넷 서비스를 제공하는 클라우드 컴퓨팅이 최근 큰 관심을 받고 있다. 그러나 클라우드 컴퓨팅 시스템에 저장되는 데이터는 암호화한 후 저장되어도 기밀 정보가 유출되는 문제점이 있다. 본 논문에서는 사용자가 클라우드 컴퓨팅 시스템에서 제공되는 데이터를 제 3자가 임의로 악용하는 것을 예방하기 위한 그룹 키 관리 프로토콜을 제안한다. 제안된 프로토콜은 임의의 사용자가 원격에서 클라우드 컴퓨팅 서버에 접근할 경우 서버에 존재하는 사용자 인증 데이터베이스내 사용자 정보를 일방향 해쉬 함수와 XOR 연산을 사용하여 사용자 인증을 제공받는다. 도한 사용자의 신분확인 및 권한을 연동하여 클라우드 컴퓨팅 시스템에 불법적으로 접근하는 사용자를 탐색함으로써 클라우드 컴퓨팅의 사용자 보안 문제를 해결하고 있다.

고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석 (Contact Resistance Analysis of High-Sheet-Resistance-Emitter Silicon Solar Cells)

  • 안준용;정주화;도영구;김민서;정지원
    • 신재생에너지
    • /
    • 제4권2호
    • /
    • pp.74-80
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Size-dependent Optical and Electrical Properties of PbS Quantum Dots

  • Choi, Hye-Kyoung;Kim, Jun-Kwan;Song, Jung-Hoon;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.186-186
    • /
    • 2012
  • This report investigates a new synthetic route and the size-dependent optical and electrical properties of PbS nanocrystal quantum dots (NQDs) in diameters ranging between 1.5 and 6 nm. Particularly we synthesize ultra-small sized PbS NQDs having extreme quantum confinement with 1.5~2.9 nm in diameter (2.58~1.5 eV in first exciton energy) for the first time by adjusting growth temperature and growth time. In this region, the Stokes shift increases as decreasing size, which is testimony to the highly quantum confinement effect of ultra-small sized PbS NQDs. To find out the electrical properties, we fabricate self-assembled films of PbS NQDs using layer by layer (LBL) spin-coating method and replacing the original ligands with oleic acid to short ligands with 1, 2-ethandithiol (EDT) in the course. The use of capping ligands (EDT) allows us to achieve effective electrical transport in the arrays of solution processed PbS NQDs. These high-quality films apply to Schottky solar cell made in an glass/ITO/PbS/LiF/Al structure and thin-film transistor varying the PbS NQDs diameter 1.5~6 nm. We achieve the highest open-circuit voltage (<0.6 V) in Schottky solar cell ever using PbS NQDs with first exciton energy 2.58 eV.

  • PDF

M/G/1 복수 휴가 모델을 이용한 IEEE 802.16e 무선 MAN 수면모드 작동에 대한 성능분석 (Performance Analysis of a Sleep Mode Operation in the IEEE 802.16e Wireless MAN with M/G/1 Multiple Vacations Model)

  • 정성환;홍정완;장우진;이창훈
    • 한국경영과학회지
    • /
    • 제32권4호
    • /
    • pp.89-99
    • /
    • 2007
  • In this paper, an analytic model of a sleep mode operation in the IEEE 802.16e is investigated. A mobile subscriber station(MSS) goes to sleep mode after negotiations with the base station(BS) and wakes up periodically for a short interval to check whether there is downlink traffic to it. If the arrival of traffic is notified, an MSS returns to wake mode. Otherwise, it again enters increased sleep interval which is double as the previous one. In order to consider the situation more practically, we propose the sleep mode starting threshold, during which MSS should await packets before it enters the sleep mode. By modifying the M/G/l with multiple vacations model, energy consumption ratio(ECR) and average packet response time are calculated. Our analytic model provides potential guidance in determining the optimal parameters values such as sleep mode starting threshold, minimal sleep and maximal sleep window.

지하수 히트펌프 시스템의 대수층 활용 사레 연구 (Study on the aquifer utilization for a ground water heat pump system)

  • 심병완;이철우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.32-35
    • /
    • 2006
  • The validation of a groundwater source heat pump system installation site is estimated by bydrogeothermic model ing. The hydraulic characteristics of the aquifer system is evaluated from pumping and recovery tests. In addition, the temperature distribution by the pumping and the injection of groundwater, and water level fluctuations are simulated by numerical modeling. The total cooling and heating load for the building is designed as 120RT(refrigeration ton) and the ground water source heat pump system covers 50RT as a subsidiary system The scenario of heat pump operation is organized as pumping and inject ion of groundwater that is performed for 8 hours per day in cooling mode for 90 days during the summer season The heat transfer by the injected warm water is limited near the inject ion wells in the simulated temperature distribution. The reason is that the given operation time is too short to expect broad thermal diffusion in large volume of the aquifer in the simulation time The simulated groundwater level and temperature distribution can be used as important data to develope an energy effective pumping and injection well system. Also it will be very useful to evaluate the hydraulic capacity of a target groundwater reservoir.

  • PDF

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • 휘빙;장홍;장경희
    • 한국통신학회논문지
    • /
    • 제35권7A호
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.

How the Sun generates "killer electrons" in near-Earth space

  • Lee, Dae-Young
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.29-29
    • /
    • 2014
  • A fundamental problem in space physics is to explain the origin of energetic charged particles in space close to the Earth and the significant temporal variations of their flux. The particles are primarily electrons and protons although energetic heavy ions such as O+ are sometimes non-negligible. By "energetic" we mean a rather broad energy range of particles from a few tens of keV to well above MeV. Drastic variations of the particle fluxes (by >3 orders of magnitude) occur over both a short time scale like a few minutes and a long time scale like the 11-year sunspot cycle. In this talk I will focus on relativistic energy electrons (~MeV) trapped within the Earth's magnetosphere. They are a primary element of the space weather since they can cause damage to satellites, so often called "killer electrons". Considering that the source particles in both the solar wind and the ionosphere are relatively cold (~eV), the quasi-permanent existence of these very energetic particles close to the Earth has been a surprise to space physicists for decades. Complex electromagnetic processes such as wave-particle interactions within the magnetosphere are believed to play a major role in generating these killer electrons. While detailed physics remains an active research area, for this lecture I will introduce a synthesized picture of how solar activities are related to wave-particle interaction physics inside the magnetosphere. This can be applied to other astrophysical systems.

  • PDF