Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.12
/
pp.6602-6609
/
2013
This study is expected to provide background data for establishing mitigation measures for malodor and for comparing complex odor criteria. The impact of malodor at the afflicted locations was analyzed using Industrial Source Complex Short Term 3 (ISCST3) model, which was recommended by the EPA. The Odor Emission Rates (ODR) for piglets and hogs were predicted based on the average, minimum, and maximum emission rates as classification. The forecasting result of the complex odor modelling of pigsty showed that tolerance limit was exceeded at an adjacent administration building, but tolerance limit was not surpassed at an afflicted location which was within 185m from the pigsty. The ISCST3 modelling of the satisfactory ODR for tolerance limit was accomplished at the administration building. From the prediction of this modelling, maximum emission rates based on 1hr at administration building were 10.59~52.93, 19.05~31.76, and 10.59 $OU/m^3/s/m^2$ at emission rates of 50%, 30%, and 10%. This emission rate was slightly higher than the tolerance limit of 10.00 $OU/m^3/s/m^2$. However, it was inferred that the tolerance limit could be satisfied if the emission rate of 10% was controlled.
Kim, Sung-Joon;Lee, Hyeong-Won;Hwang, Jeong-Seok;Won, Chan-Hee
Journal of Korean Society on Water Environment
/
v.26
no.3
/
pp.460-467
/
2010
For D-WTP's sedimentation basin and distribution reservoir, and water tap the predictive models proposed tentatively herein included the models for estimating TTHM concentration in precipitated water, for treated water and for tap water, and the estimated correlation formula between treated water's TTHM concentration and tap water. As for TTHM-concentration predictive model in sedimentation water, the coefficient of determination is 0.866 for best-fitted short-term $DOC{\times}UV_{254}$ based Model (TTHM). As for $HAA_5$-concentration predictive model in sedimentation water, the coefficient of determination is 0.947 for the suitable $UV_{254}$-based model ($HAA_5$). In case of the predictive model in treated water, the coefficient of determination is 0.980 for best-fitted $DOC{\times}UV_{254}$ based model (TTHM) using coagulated waters, while the coefficient of determination is 0.983 for best-fitted $DOC{\times}UV_{254}$ based model ($HAA_5$) using coagulated waters, which described the $HAA_5$ concentration well. However, the predictive model for tap water could not be compatible with the one for treated water, only except for possibility inducing correlation formula for prediction, [i.e., the correlation formula between TTHM concentration and tap water was verified as TTHM (tap water) = $1.162{\times}TTHM$ (treated water), while $HAA_5$ (tap water) = $0.965{\times}HAA_5$ (treated water).] The correlation analysis between DOC and $KMnO_4$ consumption by process resulted in higher relationship with filtrated water, showing that its regression is $DOC=0.669{\times}KMnO_4$ consumption - 0.166 with 0.689 of determination coefficient. By substituting it to the existing DOC-based model ($HAA_5$) for treated water, the consequential model formula was made as follows; $HAA_5=8.35(KMnO_4\;consumption{\times}0.669-0.166)^{0.701}(Cl_2)^{0.577}t^{0.150}0.9216^{(pH-7.5)}1.022^{(Temp-20^{\circ}C)}$
The traffic management schemes through traffic signal control and information provision could be effective when the link-level data and trip-level data were used simultaneously in analysis Procedures. But, because the trip-level data. such as origin, destination and departure time, can not be obtained through the existing surveillance systems directly. It is needed to estimate it using the link-level data which can be obtained easily. Therefore the objective of this study is to develop the model to estimate O-D demand using only the link flows in highway network as a real time. The methodological approaches in this study are kalman filer, least-square method and normalized least-square method. The kalman filter is developed in the basis of the bayesian update. The normalized least-square method is developed in the basis of the least-square method and the natural constraint equation. These three models were experimented using two kinds of simulated data. The one has two abrupt changing Patterns in traffic flow rates The other is a 24 hours data that has three Peak times in a day Among these models, kalman filer has Produced more accurate and adaptive results than others. Therefore it is seemed that this model could be used in traffic demand management. control, travel time forecasting and dynamic assignment, and so forth.
Ha, Jung-Ah;Heo, Tae-Young;Oh, Sei-Chang;Lim, Sung-Han
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.1
/
pp.1-14
/
2013
Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it's difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.
In recent, the hydrological regime of the Mekong river is changing drastically due to climate change and haphazard watershed development including dam construction. Information of hydrologic feature like streamflow of the Mekong river are required for water disaster prevention and sustainable water resources development in the river sharing countries. In this study, runoff simulations at the Kratie station of the lower Mekong river are performed using SWAT (Soil and Water Assessment Tool), a physics-based hydrologic model, and LSTM (Long Short-Term Memory), a data-driven deep learning algorithm. The SWAT model was set up based on globally-available database (topography: HydroSHED, landuse: GLCF-MODIS, soil: FAO-Soil map, rainfall: APHRODITE, etc) and then simulated daily discharge from 2003 to 2007. The LSTM was built using deep learning open-source library TensorFlow and the deep-layer neural networks of the LSTM were trained based merely on daily water level data of 10 upper stations of the Kratie during two periods: 2000~2002 and 2008~2014. Then, LSTM simulated daily discharge for 2003~2007 as in SWAT model. The simulation results show that Nash-Sutcliffe Efficiency (NSE) of each model were calculated at 0.9(SWAT) and 0.99(LSTM), respectively. In order to simply simulate hydrological time series of ungauged large watersheds, data-driven model like the LSTM method is more applicable than the physics-based hydrological model having complexity due to various database pressure because it is able to memorize the preceding time series sequences and reflect them to prediction.
Background: Facet joint disease plays a major role in axial low-back pain. Few diagnostic tests and imaging methods for identifying this condition exist. Single photon emission computed tomography (SPECT) is reported that it has a high sensitivity and specificity in diagnosing facet disease. We prospectively evaluated the use of bone scintigraphy with SPECT for the identification of patients with low back pain who would benefit from medial branch block. Methods: SPECT was performed on 33 patients clinically suspected of facet joint disease. After SPECT, an ultrasound guided medial branch block was performed on all patients. On 28 SPECT-positive patients, medial branch block was performed based on the SPECT findings. On 5 negative patients, medial branch block was performed based on clinical findings. For one month, we evaluated the patients using the visual analogue scale (VAS) and Oswestry disability index. SigmaStat and paired t-tests were used to analyze patient data and compare results. Results: Of the 33 patients, the ones who showed more than 50% reduction in VAS score were assigned 'responders'. SPECT positive patients showed a better response to medial branch blocks than negative patients, but no changes in the Oswestry disability index were seen. Conclusions: SPECT is a sensitive tool for the identification of facet joint disease and predicting the response to medial branch block.
This study examined whether the difference in the middle cerebral artery (MCA) velocities can predict the prognosis of stroke and whether the prognostic impact differs among stroke subtypes. Transient ischemic attack (TIA) or acute ischemic stroke patients, who underwent a routine evaluation and transcranial Doppler (TCD), were included in this study. The MCA asymmetry index was calculated using the relative percentage difference in the mean flow velocity (MFV) between the left and right MCA: (|RMCA MFV-LMCA MFV|/mean MCA MFV)${\times}100$. The stroke subtypes were determined using the TOAST classification. Poor functional outcomes were defined as a mRS score ${\geq}3$ at 3 months after the onset of stroke. A total of 988 patients were included, of whom 157 (15.9%) had a poor functional outcome. Multivariable analysis showed that only the MCA asymmetry index was independently associated with a poor functional outcome. ROC curve analysis showed that adding the MCA asymmetry index to the prediction model improved the discrimination of a poor functional outcome from acute ischemic stroke (from 88.6% [95% CI, 85.2~91.9] to 89.2% [95% CI, 85.9~92.5]). The MCA asymmetry index has an independent prognostic value for predicting a poor short-term functional outcome after an acute cerebral infarction. Therefore, TCD may be useful for predicting a poor functional outcome in patients with acute ischemic stroke.
Korean Journal of Agricultural and Forest Meteorology
/
v.14
no.4
/
pp.143-154
/
2012
As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.14
no.6
/
pp.77-90
/
2015
An increasing number of vehicles is causing various traffic problems such as chronic congestion of highways and air pollution. Local governments have been managing traffic by constructing systems such as Intelligent Transport Systems (ITS) and Advanced Traffic Management Systems (ATMS) to relieve such problems, but construction of an infrastructure-based traffic system is insufficient in resolving chronic traffic problems. A more sophisticated system with enhanced operational management capabilities added to the existing facilities is necessary at this point. As traffic patterns of the urban traffic flow is time-specific due to the different vehicle populations throughout the time of the day, a local network-wide signal operation plan that can manage such situation-specific traffic patterns is deemed to be necessary. Therefore, this study is conducted for the purpose of establishment of a plan for contextual signal control management through signal optimization at the network level after setting the Frame Signal in accordance to the traffic patterns gathered from the short-term traffic forecast data as a means to mitigate the problems with existing standardized signal operations.
A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.