• 제목/요약/키워드: Short-term Power Forecasting

검색결과 122건 처리시간 0.025초

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.

지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측 (Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning)

  • 장진혁;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.478-484
    • /
    • 2018
  • 본 연구는 기온, 강수량, 풍향, 풍속, 습도, 운량, 일조, 일사 등 시간별 기상 데이터를 이용하여, 일사 및 일조 그리고 태양광 발전예측을 하였다. 지도학습에서 입출력패턴은 예측에서 가장 중요한 요소이지만 인간이 직접 결정해야하기 때문에, 반복적인 실험에 의해 결정해야 한다. 본 연구는 일사 및 일조 예측을 위하여 4가지 모델의 입출력 패턴을 제안하였다. 또한, 예측된 일조 및 일사 데이터와 전라남도 영암 태양광 발전소의 발전량 데이터를 사용하여 태양광 발전량을 예측하였다. 실험결과 일조 및 일사 예측에서 모델 4가 가장 예측결과가 우수했으며, 모델 1에 비해 일조의 RMSE는 1.5배 정도 그리고 일사의 RMSE는 3배 정도 오차가 줄었다. 태양광 발전예측 실험결과 일조 및 일사와 마찬가지로 모델 4가 가장 예측결과가 좋았으며, 모델 1 보다 RMSE가 2.7배 정도 오차가 줄었다.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

LSTM을 사용한 SHAP 기반의 설명 가능한 태양광 발전량 예측 기법 (SHAP-based Explainable Photovoltaic Power Forecasting Scheme Using LSTM)

  • 박성우;노윤아;정승민;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.845-848
    • /
    • 2021
  • 최근 화석연료의 급격한 사용에 따른 자원고갈이나 환경오염과 같은 문제들이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 높아지고 있다. 태양광 에너지는 다른 에너지원에 비해 고갈의 우려가 없고, 부지 선정의 제약이 크지 않아 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효과적으로 사용하기 위해서는 태양광 발전량에 대한 정확한 예측 모델이 필요하다. 이를 위한 다양한 딥러닝 기반의 예측 모델들이 제안되었지만, 이러한 모델들은 모델 내부에서 일어나는 의사결정 과정을 들여다보기가 어렵다. 의사결정에 대한 설명이 없다면 예측 모델의 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이런 문제를 위해서 최근 주목을 받는 설명 가능한 인공지능 기술을 사용한다면, 예측 모델의 결과 도출에 대한 해석을 제공할 수 있어 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 모델의 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 Long Short-Term Memory(LSTM)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHapley Additive exPlanation(SHAP)을 통하여 설명하는 태양광 발전량 예측 기법을 제안한다.

Characteristics of thunderstorms relevant to the wind loading of structures

  • Solari, Giovanni;Burlando, Massimiliano;De Gaetano, Patrizia;Repetto, Maria Pia
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.763-791
    • /
    • 2015
  • "Wind and Ports" is a European project that has been carried out since 2009 to handle wind forecast in port areas through an integrated system made up of an extensive in-situ wind monitoring network, the numerical simulation of wind fields, the statistical analysis of wind climate, and algorithms for medium-term (1-3 days) and short term (0.5-2 hours) wind forecasting. The in-situ wind monitoring network, currently made up of 22 ultrasonic anemometers, provides a unique opportunity for detecting high resolution thunderstorm records and studying their dominant characteristics relevant to wind engineering with special concern for wind actions on structures. In such a framework, the wind velocity of thunderstorms is firstly decomposed into the sum of a slowly-varying mean part plus a residual fluctuation dealt with as a non-stationary random process. The fluctuation, in turn, is expressed as the product of its slowly-varying standard deviation by a reduced turbulence component dealt with as a rapidly-varying stationary Gaussian random process with zero mean and unit standard deviation. The extraction of the mean part of the wind velocity is carried out through a moving average filter, and the effect of the moving average period on the statistical properties of the decomposed signals is evaluated. Among other aspects, special attention is given to the thunderstorm duration, the turbulence intensity, the power spectral density and the integral length scale. Some noteworthy wind velocity ratios that play a crucial role in the thunderstorm loading and response of structures are also analyzed.

딥 러닝을 이용한 부동산가격지수 예측 (Predicting the Real Estate Price Index Using Deep Learning)

  • 배성완;유정석
    • 부동산연구
    • /
    • 제27권3호
    • /
    • pp.71-86
    • /
    • 2017
  • 본 연구의 목적은 딥 러닝 방법을 부동산가격지수 예측에 적용해보고, 기존의 시계열분석 방법과의 비교를 통해 부동산 시장 예측의 새로운 방법으로서 활용가능성을 확인하는 것이다. 딥 러닝(deep learning)방법인 DNN(Deep Neural Networks)모형 및 LSTM(Long Shot Term Memory networks)모형과 시계열분석 방법인 ARIMA(autoregressive integrated moving average)모형을 이용하여 여러 가지 부동산가격지수에 대한 예측을 시도하였다. 연구결과 첫째, 딥 러닝 방법의 예측력이 시계열분석 방법보다 우수한 것으로 나타났다. 둘째, 딥 러닝 방법 중에서는 DNN모형의 예측력이 LSTM모형의 예측력보다 우수하나 그 정도는 미미한 수준인 것으로 나타났다. 셋째, 딥 러닝 방법과 ARIMA모형은 부동산 가격지수(real estate price index) 중 아파트 실거래가격지수(housing sales price index)에 대한 예측력이 가장 부족한 것으로 나타났다. 향후 딥 러닝 방법을 활용함으로써 부동산 시장에 대한 예측의 정확성을 제고할 수 있을 것으로 기대된다.

유통업체의 부실예측모형 개선에 관한 연구 (Performance Evaluation and Forecasting Model for Retail Institutions)

  • 김정욱
    • 유통과학연구
    • /
    • 제12권11호
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose - The National Agricultural Cooperative Federation of Korea and National Fisheries Cooperative Federation of Korea have prosecuted both financial and retail businesses. As cooperatives are public institutions and receive government support, their sound management is required by the Financial Supervisory Service in Korea. This is mainly managed by CAEL, which is changed by CAMEL. However, NFFC's business section, managing the finance and retail businesses, is unified and evaluated; the CAEL model has an insufficient classification to evaluate the retail industry. First, there is discrimination power as regards CAEL. Although the retail business sector union can receive a higher rating on a CAEL model, defaults have often been reported. Therefore, a default prediction model is needed to support a CAEL model. As we have the default prediction model using a subdivision of indexes and statistical methods, it can be useful to have a prevention function through the estimation of the retail sector's default probability. Second, separating the difference between the finance and retail business sectors is necessary. Their businesses have different characteristics. Based on various management indexes that have been systematically managed by the National Fisheries Cooperative Federation of Korea, our model predicts retail default, and is better than the CAEL model in its failure prediction because it has various discriminative financial ratios reflecting the retail industry situation. Research design, data, and methodology - The model to predict retail default was presented using logistic analysis. To develop the predictive model, we use the retail financial statements of the NFCF. We consider 93 unions each year from 2006 to 2012 to select confident management indexes. We also adapted the statistical power analysis that is a t-test, logit analysis, AR (accuracy ratio), and AUROC (Area Under Receiver Operating Characteristic) analysis. Finally, through the multivariate logistic model, we show that it is excellent in its discrimination power and higher in its hit ratio for default prediction. We also evaluate its usefulness. Results - The statistical power analysis using the AR (AUROC) method on the short term model shows that the logistic model has excellent discrimination power, with 84.6%. Further, it is higher in its hit ratio for failure (prediction) of total model, at 94%, indicating that it is temporally stable and useful for evaluating the management status of retail institutions. Conclusions - This model is useful for evaluating the management status of retail union institutions. First, subdividing CAEL evaluation is required. The existing CAEL evaluation is underdeveloped, and discrimination power falls. Second, efforts to develop a varied and rational management index are continuously required. An index reflecting retail industry characteristics needs to be developed. However, extending this study will need the following. First, it will require a complementary default model reflecting size differences. Second, in the case of small and medium retail, it will need non-financial information. Therefore, it will be a hybrid default model reflecting financial and non-financial information.

심층학습을 이용한 한국종합주가지수의 특성분석 (Characteristic Analysis of Kospi Index Using Deep Learning)

  • 한상일
    • 실천공학교육논문지
    • /
    • 제16권1_spc호
    • /
    • pp.51-58
    • /
    • 2024
  • 본고는 Kospi와 S&P500 지수를 이용해 한미 주식시장 간 차이를 보고 이를 통해 정책적 시사점을 논하고자 한다. 이를 위해 기존 시계열 분석 방법에 더해 심층학습 방법으로 시장간 비교를 하되 주가 예측력, 자료 생성 능력 측면에서 비교를 했다. 월별자료에서 시계열간 차이는 크지 않고 일별 자료에서 안정성 측면에서 차이가 약하며, 예측력이나 모의자료 생성에서도 차이가 크지 않았다. 본 연구결과와 같이 시장가격 움직임의 패턴이 한미간에 차이가 크지 않다면, 공매도의 부작용에 대한 대책으로 담보비율, 보고주기와 같은 직접적 규제보다 미국과 유사하게 투자자들의 자산운용 전략에 영향을 미치는 장기 주식보유에 대한 세제혜택과 같은 제도개편이 효과적이라 본다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

기술예측을 위한 특허 키워드 네트워크 분석 (Keyword Network Analysis for Technology Forecasting)

  • 최진호;김희수;임남규
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.227-240
    • /
    • 2011
  • 특허의 중요성이 커짐에 따라 특허분석의 중요성 또한 점점 커지고 있다. 특허분석은 네트워크 기반 방법과 키워드 기반 방법으로 나눠지는데 네트워크 기반은 특허 내부에 존재하는 세부 기술정보에 대한 분석이 불가능하다는 단점이 있고 키워드 기반은 기술정보간의 상호관계를 규명하지 못한다는 단점이 있다. 기존에 제시된 네트워크 기반 특허 분석과 키워드 기반 분석의 한계를 극복하기 위해서 두 방법을 혼합한 방법으로서 본 연구에서는 특허 키워드 네트워크 기반 분석 방법론을 제시하였다. 본 연구에서는 LED 분야의 특허들을 대상으로 텍스트 마이닝을 통해 중요한 기술정보를 추출한 다음, 키워드 네트워크를 구축하고, 이를 대상으로 커뮤니티 네트워크 분석을 수행하였다. 분석 결과는 다음과 같다. 첫째, 특허 키워드 네트워크는 매우 낮은 밀도와 매우 높은 클러스터링 지수를 나타내었다. 밀도가 높다는 것은 LED 분야내 특허 키워드 네트워크 내 노드(키워드)들이 산발적으로 연결되어 있다는 것을 의미하며, 클러스터링 지수가 높다는 것은 해당 키워드 네트워크 내 노드, 즉 키워드들이 각각의 커뮤니티로 매우 긴밀하게 연결되어 있음을 나타낸다. 둘째, 특허 키워드 네트워크도 다른 지식네트워크와 마찬가지로 명확한 멱함수 분포를 따른다는 사실을 알 수 있었다. 이는 기존에 활발히 연구, 활용되어 많은 연결고리를 갖고 있는 특허개념(키워드)수록 지속적으로 다른 연구자들에 의해 선택되고 이 키워드를 바탕으로 새로운 키워드들이 연결되어서 이들 키워드간의 조합으로 새로운 기술이 발명된다는 것이다. 셋째, 특허가 개발될 때 특정 분야에 유입된 키워드 중 새로운 링크가 생긴 키워드의 대부분이 기존에 연결되어 있던 커뮤니티 내의 키워드들과 결합되어 새로운 특허 개념을 구성한다는 사실을 발견하였다. 이러한 사실은 단기(4년) 장기(10년) 두 기간 모두 동일하게 나타났다. 나아가 본 연구에서 제시한 방법론을 통해 도출된 특허 키워드 조합 정보를 활용하면 미래에 어떤 개념들이 합쳐져서 새로운 특허 단위로 만들어 질지 가늠해볼 수 있고, 새로운 특허를 개발할 때 참고할 수 있는 유용한 정보로 활용할 수 있다.