• 제목/요약/키워드: Short-chain fatty acid

검색결과 190건 처리시간 0.022초

Purification, Characterization and Immobilization of Lipase from Proteus vulgaris OR34 for Synthesis of Methyl Oleate

  • Misbah, Asmae;Koraichi, Saad Ibnsouda;Jouti, Mohamed Ali Tahri
    • Microbiology and Biotechnology Letters
    • /
    • 제48권4호
    • /
    • pp.491-505
    • /
    • 2020
  • A newly isolated strain, Proteus vulgaris OR34, from olive mill waste was found to secrete an alkaline extracellular lipase at 11 U·ml-1 when cultivated on an optimized liquid medium. This lipase was purified 94.64-fold with a total yield of 9.11% and its maximal specific activity was shown to be 3232.58 and 1777.92 U·mg-1 when evaluated using the pH-stat technique at 55℃ and pH 9 and Tributyrin TC4 or olive oil as the substrate. The molecular mass of the pure OR34 lipase was estimated to be around 31 kDa, as revealed by SDS-PAGE and its substrate specificity was investigated using a variety of triglycerides. This assay revealed that OR34 lipase preferred short and medium chain fatty acids. In addition, this lipase was stable in the presence of high concentrations of bile salt (NaDC) and calcium ions appear not to be necessary for its activity. This lipase was inhibited by THL (Orlistat) which confirmed its identity as a serine enzyme. In addition, the immobilization of OR34 lipase by adsorption onto calcium carbonate increased its stability at higher temperatures and within a larger pH range. The immobilized lipase exhibited a high tolerance to organic solvents and retained 60% of its activity after 10 months of storage at 4℃. Finally, the OR34 lipase was applied in biodiesel synthesis via oleic acid mediated esterification of methanol when using hexane as solvent. The best conversion yield (67%) was obtained at 12 h and 40℃ using the immobilized enzyme and this enzyme could be reused for six cycles with the same efficiency.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Effect of supplementation of yeast with bacteriocin and Lactobacillus culture on growth performance, cecal fermentation, microbiota composition, and blood characteristics in broiler chickens

  • Chen, C.Y.;Chen, S.W.;Wang, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권2호
    • /
    • pp.211-220
    • /
    • 2017
  • Objective: The aim of the present study was to investigate the effect of yeast with bacteriocin and Lactobacillus cultures (mixture of Lactobacillus agilis BCRC 10436 and Lactobacillus reuteri BCRC 17476) supplements, alone or in combination, on broiler chicken performance. Methods: A total of 300, 1-d-old healthy broiler chickens were randomly divided into five treatment groups: i) basal diet (control), ii) basal diet+0.25% yeast (Saccharomyces cerevisiae) (YC), iii) basal diet+0.25% yeast with bacteriocin (BA), iv) basal diet+Lactobacillus cultures (LAB), and v) basal diet +0.25% yeast with bacteriocin+Lactobacillus cultures (BA+LAB). Growth performance, cecal microbiota, cecal fermentation products, and blood biochemistry parameters were determined when chickens were 21 and 35 d old. Results: The supplementation of YC, BA, and BA+LAB resulted in a significantly better feed conversion rate (FCR) than that of the control group during 1 to 21 d (p<0.05). The LAB supplementation had a significant effect on the presence of Lactobacillus in the ceca at 35 d. None of the supplements had an effect on relative numbers of L. agilis and L. reuter at 21 d, but the BA supplementation resulted in the decrease of both Lactobacillus strains at 35 d. The BA+LAB supplementation resulted in higher short chain fatty acid (SCFA) in the ceca, but LAB supplementation significantly decreased the SCFA at 35 d (p<0.05). All treatments tended to decrease ammonia concentration in the ceca at 21 d, especially in the LAB treatment group. The BA supplementation alone decreased the triacylglycerol (TG) concentration significantly at 21 d (p<0.05), but the synergistic effect of BA and LAB supplementation was required to reduce the TG concentration at 35 d. The YC supplementation tended to increase the plasma cholesterol at 21 d and 35 d. However, the BA supplementation significantly decreased the cholesterol and low density lipoprotein cholesterol level at 35 d. In conclusion, the BA+LAB supplementation was beneficial to body weight gain and FCR of broiler chickens. Conclusion: The effect of BA and LAB supplementation may be a result of the growth of lactic acid bacteria enhancement and physiological characterization of bacteriocin, and it suggests that the BA and LAB supplementation level or Lactobacillus strain selection should be integrated in future supplementation designs.

Evaluation of liquid and powdered forms of polyclonal antibody preparation against Streptococcus bovis and Fusobacterium necrophorum in cattle adapted or not adapted to highly fermentable carbohydrate diets

  • Cassiano, Eduardo Cuellar Orlandi;Perna, Flavio Junior;Barros, Tarley Araujo;Marino, Carolina Tobias;Pacheco, Rodrigo Dias Lauritano;Ferreira, Fernanda Altieri;Millen, Danilo Domingues;Martins, Mauricio Furlan;Pugine, Silvana Marina Piccoli;de Melo, Mariza Pires;Beauchemin, Karen Ann;Meyer, Paula Marques;Arrigoni, Mario de Beni;Rodrigues, Paulo Henrique Mazza
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.74-84
    • /
    • 2021
  • Objective: Feed additives that modify rumen fermentation can be used to prevent metabolic disturbances such as acidosis and optimize beef cattle production. The study evaluated the effects of liquid and powdered forms of polyclonal antibody preparation (PAP) against Streptococcus bovis and Fusobacterium necrophorum on rumen fermentation parameters in ruminally cannulated non-lactating dairy cows that were adapted or unadapted to a high concentrate diet. Methods: A double 3×3 Latin square design was used with three PAP treatments (control, powdered, and liquid PAP) and two adaptation protocols (adapted, unadapted; applied to the square). Adapted animals were transitioned for 2 weeks from an all-forage to an 80% concentrate diet, while unadapted animals were switched abruptly. Results: Interactions between sampling time and adaptation were observed; 12 h after feeding, the adapted group had lower ruminal pH and greater total short chain fatty acid concentrations than the unadapted group, while the opposite was observed after 24 h. Acetate:propionate ratio, molar proportion of butyrate and ammonia nitrogen concentration were generally greater in adapted than unadapted cattle up to 36 h after feeding. Adaptation promoted 3.5 times the number of Entodinium protozoa but copy numbers of Streptococcus bovis and Fibrobacter succinogens genes in rumen fluid were not affected. However, neither liquid nor powdered forms of PAP altered rumen acidosis variables in adapted or unadapted animals. Conclusion: Adaptation of cattle to highly fermentable carbohydrate diets promoted a more stable ruminal environment, but PAP was not effective in this study in which no animal experienced acute or sub-acute rumen acidosis.

Investigation of False Positive Rates Newborn Screening using Tandem Mass Spectrometry (TMS) Technology in Single Center (단일기관에서 이중 질량 분석법(tandem mass spectrometry technology)을 이용한 선천성 대사이상 검사의 위양성율에 대한 연구)

  • Kim, Hyunsoo;Shin, Son Moon;Ko, Sun Young;Lee, Yeon Kyung;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • 제16권1호
    • /
    • pp.18-23
    • /
    • 2016
  • Objective: Newborn screening leads to improved treatment and disease outcomes, but false-positive newborn screening results may impact include parental stress and anxiety, perception of child as unhealthy, parent-child relationship dysfunction, and increased infant hospitalizations. The purpose of this study was to investigate of the false positive rates and the causative factors of false positive results in Tandem Mass Spectrometry (TMS) in single center. Methods: Records were reviewed for all 18,872 subjects who were born in Cheill General Hospital, during January 1st, 2012 to December 31st, 2014. 17,292 neonates (91.62%) were tested for tandem mass screening almost in 2-5th day of life. Newborn babies whose first results were abnormal had been tested repeatedly by same methods in 7-14 day. If the results were abnormal again, further evaluation was performed. TMS analysis included data for the 43 disorders screened for using TMS broken down into three categories: fatty acid oxidation disorders, organic acidurias, and aminoacidopathies. The impact of several factors on increased false positive rates was analyzed using a multivariate analysis: time from birth to sample collection, birth weight, birth height, BMI, gender, gestational age, delivery type. Results: Males of the subjects were 8942 (51.7%), female 8350 (48.3%), the mean gestational age was $38.6{\pm}1.7$ weeks, the average birth weight $3,155.6{\pm}502.4g$, the average birth height $49.1{\pm}2.9cm$, and the average BMI $13.0{\pm}3.8(kg/m^2)$. Vaginal delivery cases were 9713 (56.2%), caesarean section 7,579 (43.8%). The average date of the inspection was $2.8{\pm}1.1$ days. 224 cases were identified as TMS positive. All the subjects were false positive (222/17,292, 1.30%) except 2 cases (1 male; benign phenylketonuria and 1 female; Short chain acyl-CoA dehydrogenase deficiency). The false positive rates were 0.61% in fatty acid oxidation disorders, 0.25% in organic acidurias, and 0.45% in aminoacidopathies. In our study, the date of inspection got late, the false positive rates got higher. Because almost the cases of late test date were in treatment in neonatal intensive care unit so their test date was affected by their medical conditions. False positive rate was higher in extreme immaturity${\leq}27$ weeks than newborns of gestational age >27 weeks [OR=6.957 (CI=1.273-38.008), p<0.025] and extremely low birth weight<1,000 g than newborns of birthweight ${\geq}1,000g$ [OR=5.616 (CI=1.134-27.820), p<0.035]. Conclusion: False positive rate of TMS was 1.30% in Cheil General Hospital. Lower gestational age and birth weight impacted on increased false positive rates. Better understanding of factors that influence the reporting of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting. of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting.

  • PDF

A cost-benefit analysis on tandem mass spectrometry of inherited metabolic diseases in Korea (한국에서의 유전성 대사 질환에 대한 탄뎀 매스 검사의 경제성 분석)

  • Ryu, Hyoung-Ock;Lee, Dong-Hwan;Choi, Tae-Youn;Yoon, Hye-Ran
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.53-63
    • /
    • 2007
  • Purpose : Tandem mass spectrometry (MS/MS) is effective screening test for inherited metabolic diseases. In this study, we estimate potential costs and benefits of using tandem mass spectrometry (MS/MS) to screen new borns for inherited metabolic diseases (phenylketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency) in Korea. Methods : From April 2001 to March 2004, 79,179 new borns were screened for amino acid disorders, organic acid disorders, and fatty acid oxidative disorders. Twenty-eight new borns were diagnosed with one of the metabolic disorder and the collective estimated prevalence amounted to 1 in 2,800 with a sensitivity of 97.67%, a specificity of 99.28%, a recall rate of 0.05%, and a positive preditive value of 6.38%. We calculated and compared the total costs in case when neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, and when not. Results : If the neonatal screening on pheny lketonuria, BH4 deficiency, citrullinemia, maple syrup urine disease, propionic aciduria, isovaleric aciduria, glutaric aciduria type 1, LCHAD deficiency is implemented, total benefits far exceed costs at a ratio of 1.40:1. Conclusion : Although, this study only concerns the monetary aspects of the neonatal screening, tandem mass spcetrometry for neonatal screening is cost-effective compared with not screening. The study appears to support the introduction of tandem mass spectrometry into a Korea neonatal screening programme for inherited metabolic diseases.

  • PDF

Effects of Sodium Butyrate on the Biosynthesis of Sphingolipids in HT29, a Human Colon Cancer Cell Line (Sodium Butyrate 처리가 대장암 세포주인 HT29 Cell의 Sphingolipid 생합성에 미치는 영향)

  • 김희숙
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.160-168
    • /
    • 1999
  • Butyrate is one of the short-chain fatty acids that are present in the colon of mammals in millimolar concentration as a result of microbial anaerobic fermentation of dietary fiber, undigested starch, and proteins. In this study, sodium butyrate was examined in HT29 cell, human colonic cancer cell line, on cell viability, alkaline phosphatase activity, PLC-${\gamma}$1 expression and complex sphingolipid biosynthesis. Treatment with butyrate showed that the decrease of cell adhesion and viability was time-dependent. Sodium butyrate also induced to increase the activity of alkaline phosphatase which is a differentiation marker enzyme and decrease the expression of PLC-${\gamma}$1. Biosynthesis of sphingomyelin and galactosylceramide by butyrate treatment were decreased so fast but ceramide was increased 680dpm/mg protein% more than untreated group on first day and then decreased fast. In addition, acid ceramidase and neutral ceramidase activity were inhibited early stage by sodium butyrate. These results suggest that sodium butyrate causes cell differentiation or cell growth arrest of HT29 cell accompanied by early increase of ceramide content and alkaline phosphatase activity and decrease of galactosylceramide content and PLC-r1 expression.

  • PDF

Prebiotic Properties of Levan in Rats

  • Jang, Ki-Hyo;Kang, Soon-Ah;Cho, Yun-Hi;Kim, Yun-Young;Lee, Yun-Jung;Hong, Kyung-Hee;Seong, Kyung-Hwa;Kim, So-Hye;Kim, Chul-Ho;Rhee, Sang-Ki;Ha, Sang-Do;Choue, Ryo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.348-353
    • /
    • 2003
  • Generally, two different types of fructose polymer are found in nature. One is inulin, whose fructosyl residues are linked mainly by a ${\beta}-(2,1)-linkage$, while the other is high-molecular-weight levan, whose fructosyl residues are linked mainly by a ${\beta}-(2,6)-linkage$. In contrast to the extensive studies on the prebiotic properties of inulin, there has been no report on the effect of levan on the large bowel microflora in viva. Therefore, to examine whether dietary levan can be used as a prebiotic, Sprague-Dawley male rats were fed one of two diets for 3 weeks: 1) basal diet plus sucrose; 2) basal diet plus 10% (wt/wt) levan. The cecal bowel mass, cecal and colon short-chain fatty acids (SCFAs), pH, and microflora were then compared. The intake of the levan-containing diet significantly increased the total cecal weight and wall weight. The analyses of the SCFAs in the cecal and colonic contents revealed that levan was converted into acetate, butyrate, and lactate, which resulted in acidic conditions. The intake of levan also significantly increased the total number of microorganisms by 5-fold and lactic acid-producing bacteria (LAB) 30-fold in the feces. Accordingly, the current work shows that levan can be used as a prebiotic for stimulating the growth of LAB in an animal model.

Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA

  • Sun, Chao;Hou, Zengmiao;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.576-583
    • /
    • 2009
  • G protein-coupled receptor 43 (GPR43) is a newly-discovered short-chain free fatty acid receptor and its functions remain to be defined. The objective of this study was to investigate the function of GPR43 on lipolysis. We successfully cloned the GPR43 gene from the pig (EU122439), and measured the level of GPR43 mRNA in different tissues and primary pig adipocytes. The expression level of GPR43 mRNA was higher in adipose tissue and increased gradually with adipocyte differentiation. Then we examined GPR43 mRNA level in different types, growth-stages and various regions of adipose tissue of pigs. The results showed that the expression level of GPR43 mRNA was significantly higher in adipose tissue of obese pigs than in lean pigs, and the expression level also gradually increased as age increased. We further found that the abundance of GPR43 mRNA level increased more in subcutaneous fat than visceral fat. Thereafter, we studied the correlation between GPR43 and lipid metabolism-related genes in adipose tissue and primary pig adipocytes. GPR43 gene had significant negative correlation with hormone-sensitive lipase gene (HSL, r = -0.881, p<0.01) and triacylglycerol hydrolase gene (TGH, r = -0.848, p<0.01) in adipose tissue, and had positive correlation with peroxisome proliferator-activated receptor $\gamma$ gene ($PPAR_{\gamma}$, r = 0.809, p<0.01) and lipoprotein lipase gene (LPL, r = 0.847, p<0.01) in adipocytes. In addition, we fed different concentrations of docosahexaenoic acid (DHA) to mice, and analyzed expression level changes of GPR43, HSL and TGH in adipose. The results showed that DHA down-regulated GPR43 and up-regulated HSL and TGH mRNA levels; GPR43 also had significant negative correlation with HSL (low: r = -0.762, p<0.01; high: r = -0.838, p<0.01) and TGH (low: r = -0.736, p<0.01; high: r = -0.586, p<0.01). Our results suggested that GPR43 is a potential factor which regulates lipolysis in adipose tissue, and DHA as a receptor of GPR43 might promote lipolysis through down-regulating the expression of GPR43 mRNA.

Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model

  • Anna Kang;Min-Jin Kwak;Hye Jin Choi;Seon-hui Son;Sei-hyun Lim;Ju Young Eor;Minho Song;Min Kyu Kim;Jong Nam Kim;Jungwoo Yang;Minjee Lee;Minkyoung Kang;Sangnam Oh;Younghoon Kim
    • Food Science of Animal Resources
    • /
    • 제44권5호
    • /
    • pp.1080-1095
    • /
    • 2024
  • In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.