Kim, Chang-Youn;SaKong, Joon;Chung, Jong-Hak;Joo, Ree;Jeon, Man-Joong;Sung, Nag-Jung;Kim, Sang-Kyu
Journal of Yeungnam Medical Science
/
v.14
no.2
/
pp.314-328
/
1997
A cross-sectional study was performed to evaluate the effects of chronic exposure to low-dose solvent on neurobehavioral performance of 48 male workers exposed to organic solvents. A control group of 50 workers was selected from same factories. Each worker completed a medical and occupational questionnaire and four tests of Neurobehavioral Core Test Battery. These included Benton visual retention test, digit symbol, digit span, and pursuit aiming. Comparison of mean performance showed a significantly poorer performance on digit symbol, digit span, and pursuit aiming. In univariate analysis, age contributed to poor performance on Benton visual retention test and educational level was found to reduce the performance on symbol digit in both groups. Amount of alcohol intake was found to reduce the performance on digit symbol and smoking appeared to slow pursuit aiming in the exposure group. In multiple regression analysis, controlling for age, educational level, alcohol, and smoking, Solvent exposure was found to be associated with performance of digit span, and number of correct dot of pursuit aiming. Age on Benton visual retention, educational level on digit symbol, arid smoking on pursuit aiming were found to be a significant factors on each test items. This study suggest that short-term memory, and perception can be affected easily by chronic exposure of organic solvents which air concentration levels were under the Threshold Limit Value.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.
Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
Journal of Korea Water Resources Association
/
v.54
no.spc1
/
pp.1095-1105
/
2021
The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.
An experimental study was performed to investigate. The subjects drank (0.5g/kg ethanol and performed 7 items of SPES(simple reaction time, color word stress, digit classification, finger tapping speed, numerical ability, symbol digit coding, memory digit span). 20 students of medical college participated in the study during August, 1996. After ethanol intake, performance of 4 items(simple reaction time, digit classification, finger tapping speed, symbol digit coding) significantly showed to be decreased. The function of perception-response speed and steady movement were found to be more sensitive to ethanol than that of short-term memory, numerical ability and specification of color. No significant association were found between smoking, alcohol drinking, BMI(body mass index) and the effects of ethanol on neurobehavioral performance.
The present study aimed to understand the sensory characteristic of change detection by comparing the experience of detecting a salient visual change against the experience of detecting a sensory conflict evoked by a binocular mismatch. In Experiment 1, we used the change detection task where 2, 4, or 6 items were short-term remembered in visual working memory and were compared with following test items. The half of change-present trials were manipulated to elicit a binocular rivalry on the test item with the change by way of monocular inputs across the eyes. The results showed that change detection accuracy without the rivalry manipulation declined evidently as the display setsize increased whereas no such setsize effect was observed with the rivalry manipulation. Experiment 2 tested search efficiency for the search array where the target was designated as an item with the rivalry manipulation, and found the search was very efficient regardless of the rivalry manipulation. The results of Experiment 1 and 2 showed that when the given memory load varies, the experience of detecting a salient visual change become similar to the experience of detecting a sensory conflict by a binocular rivalry.
This work aimed to investigate the psychobiotic effects of six bacterial strains on the mind and behavior of male Wistar rats. The probiotic (PRO) group (n=7) were rats pre-treated with antibiotics for 7 days followed by 14-day probiotic administration, antibiotics (ANT) group (n=7) were rats treated with antibiotics for 21 days without probiotics. The control (CON) group (n=7) were rats that received sham treatment for 21 days. The six bacterial strains with probiotic properties were mostly isolated from Thai fermented foods; Pedicoccus pentosaceus WS11, Lactobacillus plantarum SK321, L. fermentum SK324, L. brevis TRBC 3003, Bifidobacterium adolescentis TBRC 7154 and Lactococcus lactis subsp. lactis TBRC 375. The probiotics were freeze-dried into powder (6×109 CFU/5 g) and administered to the PRO group via oral gavage. Behavioral tests were performed. The PRO group displayed significantly reduced anxiety level and increased locomotor function using a marble burying test and open field test, respectively and significantly improved short-term memory performance using a novel object recognition test. Antibiotics significantly reduced microbial counts in rat feces in the ANT group by 100 fold compared to the PRO group. Probiotics significantly enhanced antioxidant enzymatic and non-enzymatic defenses in rat brains as assessed using catalase activity and ferric reducing antioxidant power assay, respectively. Probiotics also showed neuroprotective effects with less pyknotic cells and lower frequency of vacuolization in cerebral cortex. This multi-strain probiotic formulation from Thai fermented foods may offer a potential to develop psychobiotic-rich functional foods to modulate human mind and behaviors.
Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.
Journal of The Korean Association of Information Education
/
v.25
no.5
/
pp.733-740
/
2021
The purpose of this study is to present the direction of elementary school AI education by analyzing cases of classes related to AI education in actual school settings. For this purpose, 19 classes were collected as elementary school class cases based on AI education. According to the result of analyzing the class case, it was confirmed that the class was designed in a hybrid aspect of learning content and method using AI. As a result of analyzing the achievement standards and learning goals, action verbs related to memory, understanding, and application were found in 8 classes using AI from a tool perspective. When class was divided into introduction, development, and rearrangement stages, the AI education element appeared the most in the development stage. On the other hand, when looking at the ratio of learning content and learning method of AI education elements in the development stage, the learning time for approaching AI education as a learning method was overwhelmingly high. Based on this, the following implications were derived. First, when designing the curriculum for schools and grades, it should be designed to comprehensively deal with AI as a learning content and method. Second, to supplement the understanding of AI, in the short term, it is necessary to secure the number of hours in practical subjects or creative experience activities, and in the long term, it is necessary to secure information subjects.
KIPS Transactions on Software and Data Engineering
/
v.12
no.4
/
pp.179-188
/
2023
Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.