• Title/Summary/Keyword: Short-Term Memory

Search Result 756, Processing Time 0.03 seconds

Development of Fishing Activity Classification Model of Drift Gillnet Fishing Ship Using Deep Learning Technique (딥러닝을 활용한 유자망어선 조업행태 분류모델 개발)

  • Kwang-Il Kim;Byung-Yeoup Kim;Sang-Rok Yoo;Jeong-Hoon Lee;Kyounghoon Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.479-488
    • /
    • 2024
  • In recent years, changes in the fishing ground environment have led to reduced catches by fishermen at traditional fishing spots and increased operational costs related to vessel exploration, fuel, and labor. In this study, we developed a deep learning model to classify the fishing activities of drift gillnet fishing boats using AIS (automatic identification system) trajectory data. The proposed model integrates long short-term memory and 1-dimensional convolutional neural network layers to effectively distinguish between fishing (throwing and hauling) and non-fishing operations. Training on a dataset derived from AIS and validation against a subset of CCTV footage, the model achieved high accuracy, with a classification accuracy of 90% for fishing events. These results show that the model can be used effectively to monitor and manage fishing activities in coastal waters in real time.

Relative humidity prediction of a leakage area for small RCS leakage quantification by applying the Bi-LSTM neural networks

  • Sang Hyun Lee;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1725-1732
    • /
    • 2024
  • In nuclear power plants, reactor coolant leakage can occur due to various reasons. Early detection of leaks is crucial for maintaining the safety of nuclear power plants. Currently, a detection system is being developed in Korea to identify reactor coolant system (RCS) leakage of less than 0.5 gpm. Typically, RCS leaks are detected by monitoring temperature, humidity, and radioactivity in the containment, and a water level in the sump. However, detecting small leaks proves challenging because the resulting changes in the containment humidity and temperature, and the sump water level are minimal. To address these issues and improve leak detection speed, it is necessary to quantify the leaks and develop an artificial intelligence-based leak detection system. In this study, we employed bidirectional long short-term memory, which are types of neural networks used in artificial intelligence, to predict the relative humidity in the leakage area for leak quantification. Additionally, an optimization technique was implemented to reduce learning time and enhance prediction performance. Through evaluation of the developed artificial intelligence model's prediction accuracy, we expect it to be valuable for future leak detection systems by accurately predicting the relative humidity in a leakage area.

Sentimental Analysis of Twitter Data Using Machine Learning and Deep Learning: Nickel Ore Export Restrictions to Europe Under Jokowi's Administration 2022

  • Sophiana Widiastutie;Dairatul Maarif;Adinda Aulia Hafizha
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.400-420
    • /
    • 2024
  • Nowadays, social media has evolved into a powerful networked ecosystem in which governments and citizens publicly debate economic and political issues. This holds true for the pros and cons of Indonesia's ore nickel export restriction to Europe, which we aim to investigate further in this paper. Using Twitter as a dependable channel for conducting sentiment analysis, we have gathered 7070 tweets data for further processing using two sentiment analysis approaches, namely Support Vector Machine (SVM) and Long Short Term Memory (LSTM). Model construction stage has shown that Bidirectional LSTM performed better than LSTM and SVM kernels, with accuracy of 91%. The LSTM comes second and The SVM Radial Basis Function comes third in terms of best model, with 88% and 83% accuracies, respectively. In terms of sentiments, most Indonesians believe that the nickel ore provision will have a positive impact on the mining industry in Indonesia. However, a small number of Indonesian citizens contradict this policy due to fears of a trade dispute that could potentially harm Indonesia's bilateral relations with the EU. Hence, this study contributes to the advancement of measuring public opinions through big data tools by identifying Bidirectional LSTM as the optimal model for the dataset.

Prediction Model for Solar Power Generation Using Measured Data (측정 데이터를 이용한 태양광 발전량 예측 모델)

  • Yeongseo Park;Sangmin kang;Juseok Moon;Seongjun Cho;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.102-107
    • /
    • 2024
  • Previous research on solar power generation forecasting has generally relied on meteorological data, leading to lower prediction accuracy. This study, in contrast, uses actual measured power generation data to train various ANN (Artificial Neural Network) models and compares their prediction performance. Additionally, it describes the characteristics and advantages of each ANN model. The paper defines the principles of solar power generation, the characteristics of solar panels, and the model equations, and it also explains the I-V characteristics of solar cells. The results include a comparison between calculated and actual measured power generation, along with an evaluation of the accuracy of power generation predictions using artificial intelligence. The findings confirm that the LSTM (Long Short-Term Memory) model performs better than the MLP (Multi- Layer Perceptron) model in handling time-series data.

  • PDF

New Four-herb Formula Ameliorates Memory Impairments via Neuroprotective Effects on Hippocampal Cells (한약재 4종 복합추출물의 해마신경세포 보호를 통한 기억력 개선)

  • Ahn, Sung Min;Choi, Young Whan;Shin, Hwa Kyoung;Choi, Byung Tae
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.475-483
    • /
    • 2016
  • The current study was conducted to evaluate beneficial effects of a new formula (CWC-9) using four traditional Oriental medicinal herbs, Cynanchum wilfordii, Rehmannia glutinosa, Polygala tenuifolia, and Acorus gramineus, on hippocampal cells and memory function. To examine the neuroprotective effects of a new four-herb extract, cell viability, cytotoxicity, and reactive oxygen species (ROS) assays were performed in HT22 cells and behavioral tests (Morris water maze and passive avoidance retention), Western blot, and immunohistochemistry were performed in a mouse model of focal cerebral ischemia. In HT22 hippocampal cells, pretreatment with CWC-9 resulted in significantly reduced glutamate-induced cell death with suppression of ROS accumulation caused by glutamate. In a mouse model of focal cerebral ischemia, we observed significant improvement of spatial and short-term memory function by treatment with CWC-9. Phosphorylated p38 mitogen-activated protein kinases (MAPK) in hippocampus of ischemic mice were decreased by treatment with CWC-9, but phosphorylated phosphatidylinositol-3 kinase (PI3K) and cAMP response element binding protein (CREB) were significantly enhanced. By immunohistochemical analysis, we confirmed higher expression of phosphorylation of CREB in the hippocampal neurons of CWC-9 treated mice. These results suggest that new multi-herb formula CWC-9 mainly exerted beneficial effects on cognitive function through regulation of neuro-protective signaling pathways associated with CREB.

Linguistic Productivity and Chomskyan Grammar: A Critique (언어창조성과 춈스키 문법 비판)

  • Bong-rae Seok
    • Lingua Humanitatis
    • /
    • v.1 no.1
    • /
    • pp.235-251
    • /
    • 2001
  • According to Chomskyan grammar, humans can generate and understand an unbounded number of grammatical sentences. Against the background of pure and idealized linguistic competence, this linguistic productivity is argued and understood. In actual utterances, however, there are many limitations of productivity but they are said to come from the general constraints on performances such as capacity of short term memory or attention. In this paper I discuss a problem raised against idealized productivity. I argue that linguistic productivity idealizes our linguistic competence too much. By separating idealized competence from the various constraints of performance, Chomskyan theorists can argue for unlimited productivity. However, the absolute distinction between grammar (pure competence) and parser (actual psychological processes) makes little sense when we explain the low acceptability(intelligibility) of center embedded sentences. Usually, the problem of center embedded sentence is explained in terms of memory shortage or other performance constraints. To explain the low acceptability, however, we need to assume specialized memory structure because the low acceptability occurs only with a specific type of syntactic pattern. 1 argue that this special memory structure should not be considered as a general performance constraint. It is a domain specific (specifically linguistic) constraints and an intrinsic part of human language processing. Recent development of Chomskyan grammar, i.e., minimalist approach seems to close the gap between pure competence and this type of specialized constraints. Chomsky's earlier approach of generative grammar focuses on end result of the generative derivation. However, economy principle (of minimalist approach) focuses on actual derivational processes. By having less mathematical or less idealized grammar, we can come closer to the actual computational processes that build syntactic structure of a sentence. In this way, we can have a more concrete picture of our linguistic competence, competence that is not detached from actual computational processes.

  • PDF

Malware Detection Using Deep Recurrent Neural Networks with no Random Initialization

  • Amir Namavar Jahromi;Sattar Hashemi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.177-189
    • /
    • 2023
  • Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.

Groundwater Level Prediction Using ANFIS Algorithm (ANFIS 알고리즘을 이용한 지하수수위 예측)

  • Bak, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1235-1240
    • /
    • 2019
  • It is well known that the ground water level changes rapidly before and after the earthquake, and the variation of ground water level prediction is used to predict the earthquake. In this paper, we predict the ground water level in Miryang City using ANFIS algorithm for earthquake prediction. For this purpose, this paper used precipitation and temperature acquired from National Weather Service and data of underground water level from Rural Groundwater Observation Network of Korea Rural Community Corporation which is installed in Miryang city, Gyeongsangnam-do. We measure the prediction accuracy using RMSE and MAPE calculation methods. As a result of the prediction, the periodic pattern was predicted by natural factors, but the change value of ground water level was changed by other variables such as artificial factors that was not detected. To solve this problem, it is necessary to digitize the ground water level by numerically quantifying artificial variables, and to measure the precipitation and pressure according to the exact location of the observation ball measuring the ground water level.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

LSTM Language Model Based Korean Sentence Generation (LSTM 언어모델 기반 한국어 문장 생성)

  • Kim, Yang-hoon;Hwang, Yong-keun;Kang, Tae-gwan;Jung, Kyo-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.592-601
    • /
    • 2016
  • The recurrent neural network (RNN) is a deep learning model which is suitable to sequential or length-variable data. The Long Short-Term Memory (LSTM) mitigates the vanishing gradient problem of RNNs so that LSTM can maintain the long-term dependency among the constituents of the given input sequence. In this paper, we propose a LSTM based language model which can predict following words of a given incomplete sentence to generate a complete sentence. To evaluate our method, we trained our model using multiple Korean corpora then generated the incomplete part of Korean sentences. The result shows that our language model was able to generate the fluent Korean sentences. We also show that the word based model generated better sentences compared to the other settings.