• Title/Summary/Keyword: Short-Term Memory

Search Result 756, Processing Time 0.034 seconds

LSTM-based server management model for carbon-neutral data center operation (탄소중립적 데이터 센터 운영을 위한 LSTM기반 서버 관리 모델)

  • Ma, Sang-Gyun;Park, Jaehyun;Seo, Yeong-Seok
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.487-490
    • /
    • 2022
  • 최근 데이터 활용이 중요해지고 있는 시대인 만큼 데이터센터의 중요도도 높아지고 있다. 하지만 데이터센터는 24시간 가동되는 막대한 전력을 소모하는 시설이기 때문에 환경적, 경제적 측면에서 문제가 되고 있다. 최근 딥러닝 기법들을 사용하여 데이터센터나 서버에서 사용되는 전력을 줄이거나, 트래픽을 예측하는 연구들이 다양한 관점에서 이루어지고 있다. 그러나 서버에서 처리되는 트래픽 데이터양은 변칙적이며 이는 서버를 관리하기 어렵게 만든다. 또한, 가변적으로 서버를 관리하는 기법에 대한 연구들이 여전히 많이 요구되어지고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 시계열 데이터 예측에 강세를 보이는 장단기 기억 신경망(Long-Term Short Memory, LSTM)을 기반으로 한 가변적인 서버 관리 기법을 제안한다. 제안된 모델을 통해 현업환경에서 이전보다 안정적이고 효율적으로 서버를 관리할 수 있게 되며, 서버에서 사용되는 전력을 보다 효과적으로 줄일 수 있게 된다. 제안된 모델의 검증을 위해 위키 피디아(WikiPedia) 서버의 트래픽 데이터양을 수집한 뒤 실험을 수행하였다. 실험 결과 본 논문에서 제안된 모델이 유의미한 성능을 보이며, 서버 관리를 안정적이고 효율적으로 수행할 수 있음을 보여주었다.

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

Analysis of AI-based techniques for predicting water level according to rainfall (강우에 따른 수위 예측을 위한 AI 기반 기법 분석)

  • Kim, Jin Hyuck;Kim, Chung-Soo;Kim, Cho-Rong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.294-294
    • /
    • 2021
  • 강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.

  • PDF

Comparison of hydrologic models and deep learning techniques for rainfall-runoff analysis (강우유출 분석을 위한 수문 모형과 딥러닝 기법의 비교 분석)

  • Kim, Jin Hyuck;Kim, Cho-Rong;Kim, Chung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.295-295
    • /
    • 2021
  • 수자원 관리 및 계획 수립에 있어 강우 유출 분석은 가장 중요하며, 기본적인 분석이다. 기존의 강우 유출 분석은 일반적으로 수문 모형을 이용한다. 강우 유출 분석은 강수와 증발산 과정, 즉 물순환에 있어 복잡한 상호 작용을 고려해야한다. 본 연구에서는 기존의 수문 모형과 데이터간의 관계를 포착할 수 있는 딥러닝 기법을 이용한 강우 유출분석 수행하였다. 우리나라의 유역 중, 비교적 풍부한 수문데이터를 보유하고 있는 IHP (International Hydrological Program)의 청미천 유역을 연구대상지역으로 연구를 수행하였다. 수문 모형으로는 SWAT (Soil and Water Assessment Tool)을 이용하였으며, 딥러닝 기법은 시계열 분석에 있어 주로 사용되는 RNN(Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크를 이용하였다. 분석결과 수문 모형의 성능 지표인 상관계수와 NSE (Nash-Sutcliffe Efficiency)는 LSTM 네트워크에서 더 높은 성능을 확인 할 수 있었다. 일반적으로 LSTM 네트워크는 보정 기간이 길수록 더욱 좋은 성능을 나타낸다. 즉, 과거 수문데이터가 충분히 확보된 유역에서 LSTM 네트워크와 같은 데이터 기반 모델은 다양한 지형 및 기상데이터를 필요하는 수문 모델보다 유용할 것이라 사료된다.

  • PDF

Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network) (생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발)

  • Choi, Suyeon;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

Accurate dam inflow predictions using SWLSTM (정확한 댐유입량 예측을 위한 SWLSTM 개발)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.292-292
    • /
    • 2021
  • 최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.

  • PDF

Korean sentence spacing correction model using syllable and morpheme information (음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델)

  • Choi, Jeong-Myeong;Oh, Byoung-Doo;Heo, Tak-Sung;Jeong, Yeong-Seok;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

SHAP-based Explainable Photovoltaic Power Forecasting Scheme Using LSTM (LSTM을 사용한 SHAP 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Noh, Yoona;Jung, Seungmin;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.845-848
    • /
    • 2021
  • 최근 화석연료의 급격한 사용에 따른 자원고갈이나 환경오염과 같은 문제들이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 높아지고 있다. 태양광 에너지는 다른 에너지원에 비해 고갈의 우려가 없고, 부지 선정의 제약이 크지 않아 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효과적으로 사용하기 위해서는 태양광 발전량에 대한 정확한 예측 모델이 필요하다. 이를 위한 다양한 딥러닝 기반의 예측 모델들이 제안되었지만, 이러한 모델들은 모델 내부에서 일어나는 의사결정 과정을 들여다보기가 어렵다. 의사결정에 대한 설명이 없다면 예측 모델의 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이런 문제를 위해서 최근 주목을 받는 설명 가능한 인공지능 기술을 사용한다면, 예측 모델의 결과 도출에 대한 해석을 제공할 수 있어 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 모델의 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 Long Short-Term Memory(LSTM)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHapley Additive exPlanation(SHAP)을 통하여 설명하는 태양광 발전량 예측 기법을 제안한다.

Prediction of Groundwater Level in Jeju Island Using Deep Learning Algorithm MLP and LSTM (딥러닝 알고리즘 MLP 및 LSTM을 활용한 제주도 지하수위 예측)

  • Kang, Dayoung;Byun, Kyuhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.206-206
    • /
    • 2022
  • 제주도는 투수성이 좋은 대수층이 발달한 화산섬으로 지하수가 가장 중요한 수자원이다. 인위적 요인과 기후변화로 인해 제주도의 지하수위가 저하하는 추세를 보이고 있음에 따라 지하수의 적정 관리를 위해 지하수위의 정확하고 장기적인 예측이 매우 중요하다. 다양한 환경적인 요인이 지하수의 함양 및 수위에 영향을 미치는 것으로 알려져 있지만, 제주도의 특징적인 기상인자가 지하수 시스템에 어떻게 영향을 미치는지를 파악하기 위한 연구는 거의 진행되지 않았다. 지하수위측에 있어서 물리적 모델을 이용한 방안은 다양한 조건에 의해 변화하는 지하수위의 정확하고 빠른 예측에 한계가 있는 것으로 알려져 있다. 이에 본 연구에서는 제주도 애월읍과 남원읍에 위치한 지하수위 관측정의 일 수위자료와 강수량, 온도, 강설량, 풍속, VPD의 다양한 기상 자료를 대상으로 인공신경망 알고리즘인 다층 퍼셉트론(MLP)와 Long Short Term Memory(LSTM)에 기반한 표준지하수지수(SGI) 예측 모델을 개발하였다. MLP와 LSTM의 표준지하수지수(SGI) 예측결과가 상당히 유사한 것으로 나타났으며 MLP과 LSTM 예측모델의 결정계수(R2)는 애월읍의 경우 각각 0.98, 남원읍의 경우 각각 0.96으로 높은 값을 보였다. 본 연구에서 개발한 지하수위 예측모델을 통해 효율적인 운영과 정밀한 지하수위 예측이 가능해질 것이며 기후변화 대응을 위한 지속가능한 지하수자원 관리 방안 마련에 도움을 줄 것이라 판단된다.

  • PDF

Future inflow projection based on Bayesian optimization for hyper-parameters (하이퍼매개변수 베이지안 최적화 기법을 적용한 미래 유입량 예측)

  • Tran, Trung Duc;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.347-347
    • /
    • 2022
  • 최근 데이터 사이언스의 비약적인 발전과 함께 다양한 형태의 딥러닝 알고리즘이 개발되어 수자원 분야에도 적용되고 있다. 이 연구에서는 LSTM(Long Short-Term Memory) 네트워크와 BO-LSTM이라는 베이지안 최적화(BO) 기술을 결합하여 일단위 앙상블 미래 댐유입량을 projection하는 딥 러닝 모델을 제안하였다. BO-LSTM 하이퍼파라미터 및 손실 함수는 베이지안 최적화 기법을 통해 훈련 및 최적화되며, BO 접근법은 모델의 하이퍼파라미터와 손실 함수를 높은 정확도로 빠르게 최적화할 수 있었다(R=0.92 및 NSE=0.85). 또한 미래 댐 유입량을 예측하기 위한 LSTM의 구조는 Forecasting 모형과 Proiection 모형으로 구분하여 두 모형의 장단점을 분석하였으며, 본 연구의 결과로부터 데이터 처리 단계가 모델 훈련의 효율성을 높이고 노이즈를 줄이는 데 효과적이고 미래 예측에 있어 LSTM 구조에 따른 영향을 확인할 수 있었다. 본 연구는 소양강 유역, 2020-2100년 기간 동안의 미래 예측에 적용되었다. 전반적으로, CIMIP6 데이터에 따르면 10%에서 50%의 미래 유입량 증가가 발생하는 것으로 확인되었으며, 이는 미래 강수량의 증가의 폭과 유사함을 확인하였다. 유입량 산정에 있어 신뢰할 수 있는 예측은 저수지 운영, 계획 및 관리에 있어 정책 입안자와 운영자에게 도움이 될 것입니다.

  • PDF