• Title/Summary/Keyword: Short-Circuit Tests

Search Result 105, Processing Time 0.02 seconds

Short Circuit Tests of the Three-Phase DC Reactor Type Fault Current Limiter in Changing of Turns Ratio of Transformers (변압기 권선비의 변화에 따른 3상 DC 리액터형태 한류기의 단락실험)

  • Lee, Eung-Ro;Lee, Chan-Ju;Lee, Seung-Je;Go, Tae-Guk;Hyeon, Ok-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.267-272
    • /
    • 2002
  • This Paper deals with the short circuit tests of the three-Phase DC reactor type fault current limiter (FCL) in changing of turns ratio of transformers. The experiment of this paper is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. So, superconducting coil was made of Nb-Ti, low temperature superconductor, and the ratings of the power system of experimental circuit are 400V/7A class. A three-phase DC reactor type FCL consists of three transformers, six diodes, one superconducting coil and one cryostat. The important point of experimental analysis is transient period, the operating lagging time of circuit breaker. As the results of the experiment, the values are referred to the limitation rate about 77% and 90% when the turns ratio of transformer was 1:1 and 2:1 respectively.

Compact Gas-Insulated Circuit-Breaker adopting opening-time control circuits (개극시간 조정회로를 삽입한 축소형 가스절연 차단기)

  • Kim Jung Bae;Kim Doo Sung;Seo Kyung Bo;Yang Dae Il;Song Won Pyo;Kim Maeng Hyun;Ko Hee Seok
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.485-487
    • /
    • 2004
  • High-voltage gas-insulated circuit-breaker must interrupt short-circuit current successfully when breakdown occurs in electric power system. Among many test-duties, Basic Terminal fault T100a(BTF T100a) is the one of the severest duties because of its high DC component of short-circuit current. In this paper, we developed 245kV 50kA gas circuit breaker using control circuits to reduce DC component while interrupting short-circuit current, then got good performance through high-power tests in Korea Electrotechnology Research Institute(KERI) and KEMA

  • PDF

A Study on the Cause and Countermeasures of the Short-Circuit Test Failures of the Distribution Transformer (배전용 변압기의 단락시험 불량원인 및 그 대책에 관한 연구)

  • Park, Byung-Rak;Park, Hoon-Yang;Shin, Hee-Sang;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.75-81
    • /
    • 2011
  • This study aims to research and analyze the cause and countermeasures of the short-circuit test failures of the distribution transformer, which captures failure share at the highest level when carrying out its performance test. For this purpose, the research was done on the basis of 77 failure cases out of 998 tests in total performed by the Korea Electrotechnology Research Institute(KERI) from 2004 to 2010. Based on the research, the paper also includes analysis of the causes of the short-circuit test failures in its early stage of transformer development and proposes its countermeasures accordingly.

Development of Prevention Apparatus for Short-Circuit Faults Using the Line Voltage Drop of Neutral Wire (중성선 선로 전압강하를 이용한 단락사고 방지용 보호장치 개발)

  • Kwak, Dong-Kurl;Kim, Jin-Hwan;Lee, Bong-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1953-1958
    • /
    • 2012
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with such electric faults, specially short circuit faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30ms(KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problem, this paper proposes a prevention apparatus using the line voltage drop of neutral wire and some semiconductor switching devices. Some experimental tests of the proposed apparatus confirm the validity of the analytical results.

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.

The Korean Elementary Students' Conceptions of the Simple Electric Circuit

  • Seo, Sang-Oh;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.5
    • /
    • pp.944-956
    • /
    • 2002
  • The purpose of this study was to investigate students' conceptions of the simple electric circuit using a battery and a bulb. 19 fourth grade students from a rural elementary school in Korea participated in this study. Data on the children's understandings of electric circuit were collected through three sources; prediction tests, drawing tests and individual interviews. The prediction tests were paper and pencil tests composed of 10 problems, predicting whether bulbs in 10 simple circuit diagrams would light. For each prediction, the children were asked to provide a written explanation of their thinking. The drawing tests consisted of 6 problems. One was to draw the inside of the bulb base, and the others were to make the wire connections between a battery and a bulb in the diagrams, to light the bulb. The interviews were conducted with seven children who showed differing degrees of understanding. No student was aware of the wire connections inside the bulb base. Many students stated whether the bulb would light or not, according to the tip of the bulb contacting the positive battery terminal and an end of wire contacting the negative battery terminal. Most of them thought that the tip of the bulb should contact the positive battery terminal, so that the bulb would light. In short, students did not use a scientific conception of electric current to predict and explain the electric circuit.

Parameters Optimization of Impulse Generator Circuit for Generating First Short Stroke Lightning Current Waveform

  • Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.286-292
    • /
    • 2014
  • This paper presents the parameters optimization technology for generating the first short stroke lightning current waveform($10/350{\mu}s$) which is necessary for the performance tests of components of lightning protection systems, as required under IEC 62305 and the newly amended IEC 62561. The circuit using the crowbar device specified in IEC 62305 was applied to generate the lightning current waveform. To find the proper parameters of the circuit is not easy because the circuit consists of two parts; circuit I, which relates to the front of current waveform, and circuit II, which relates to the tail. A simulation in PSpise was carried out to find main factors related to the front and tail of $10/350{\mu}s$. The lightning current generator was developed by utilizing the circuit parameters found in the simulation. In the result of experiments, new parameters of the circuits need to be changed because of the difference between the simulation and the experiment results. Using the iterative method, the optimized parameters of the circuits was determined. Also a multistage-type external coil and a damping resistor were proposed to make the efficiency of generation to enhance. According to the result in this paper, an optimized first short stroke lightning current waveform was obtained.

Test of a Current Limiting Module for Verifying of the SFCL Design (초전도 한류기 설계 검증을 위한 초전도 한류 모듈 단락 특성 시험)

  • Yang, S.E.;Kim, W.S.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.13-17
    • /
    • 2012
  • KEPCO Research Institute has been researching a Superconducting Fault Current Limiter (SFCL) which is considered one of solutions of fault current problems with Korea Institute of Machinery & Materials (KIMM) and Hanyang University since 2011. In this paper, we fabricated a current limiting module and conducted electrical short circuit tests for checking the validity of the transmission level SFCL design. Based on the short circuit characteristics of the second generation High Temperature Superconductor (HTS), we analyzed the short circuit characteristics of 3 parallel connected superconducting wires. The structure of the HTS wire is as follows: the stainless steel stabilizer of $100{\mu}m$ is laminated on the superconductor layer and under the substrate, both of which are electrically jointed with solder. We fabricated the current limiting module which has 40 series and 6 parallel connections and studied the short circuit characteristics of the module under various voltage levels.

SiC MOSFET Compared to Si Power Devices during Short Circuit Test (실리콘 카바이드와 실리콘 MOSFET의 단락회로 특성비교)

  • Nguyen, Thanh That;Ashraf, Ahmed;Park, Joung Hu
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.89-90
    • /
    • 2013
  • Higher power density, higher operational temperature, lower on state resistance and higher switching frequency capabilities of Silicon Carbide (SiC) technology devices compared to Silicon (Si) devices makes it has higher promising market. One of the most developed SiC devices is the power MOSFET. This study tests the SiC MOSFET under short circuit conditions taking into account the effect of gate voltage characteristics. The results will be compared to IGBT and MOSFET Si devices with similar ratings. A tester circuit was designed to perform the short circuit operation.

  • PDF

Application Program Specialized for High Power Testing Station (대전력시험 전용 응용 프로그램)

  • Oh, Seung-Ryle;Park, Ji-Hun;Park, Jong-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.150-152
    • /
    • 2008
  • It is necessary to improve the time efficiency in the high power testing station because tests are mainly performed by high-priced equipment. Minimizing a human error through building the database of relevant standards is possible to expect reliable tests. And also, application program that is properly customized for the certain laboratory's power system will help test engineer to easily analyze the phenomenon that is happened in short-circuit and load switching tests. This paper introduces the several functions of the application program that is developed in order to realize these requirements.

  • PDF