• 제목/요약/키워드: Short hairpin RNA

검색결과 40건 처리시간 0.018초

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro

  • Wang, Shu-zhen;Luo, Xue-gang;Shen, Jing;Zou, Jia-ning;Lu, Yun-hua;Xi, Tao
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.294-299
    • /
    • 2008
  • Elevated expression of SMYD3 is a frequent genetic abnormality in several malignancies. Few studies knocking down SMYD3 expression in cervical carcinoma cells have been performed to date. In this paper, we established an inducible short hairpin RNA expression system to examine its role in maintaining the malignant phenotype of HeLa cells. After being induced by doxycycline, SMYD3 mRNA and protein expression were both reduced, and significant reductions in cell proliferation, colony formation and migration/invasion activity were observed in the SMYD3-silenced HeLa cells. The percentage of cells in sub-G1 was elevated and DNA ladder formation could be detected, indicating potent induction of apoptosis by SMYD3 knockdown. These findings imply that SMYD3 plays crucial roles in HeLa cell proliferation and migration/invasion, and that it may be a useful therapeutic target in human cervical carcinomas.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

효과적인 siRNA의 디자인 (Designing An Effective siRNA)

  • 구남진;조광휘
    • Bioinformatics and Biosystems
    • /
    • 제2권1호
    • /
    • pp.17-23
    • /
    • 2007
  • Short interfering RNA(siRNA)는 특별한 gene의 발현을 막는데 사용될 수 있고 그 gene의 기능과 치료의 적용에 많은 가능성을 가지고 있지만, 효과적인 siRNA를 디자인하는 방법은 아직까지 명확하지 않다. 효과적인 siRNA는 서열적인 경향을 가지고 있는데 낮은 G/C content, Sense strand의 3' 끝에 적은 안정성과 1번 위치에는 G/C, 19번 위치에는 A/U의 존재 여부를 들 수 있다. 이러한 특성 말고도 최근에는 mRNA의 2차구조가 RNAi 작용에 중요한 역할을 하게 되는데 복잡한 구조(hairpin, multi loop)를 가지고 수소결합을 많이 하여 안정한 상태에 있는 부분은 siRNA의 기능을 크게 줄어들게 한다. 또한, siRNA가 특정한 mRNA에 작동하도록 BLAST 검색을 하여 부작용의 가능성을 배제한다.

  • PDF

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.

RNA 간섭을 통한 Porcine Endogenous Retrovirus의 발현 억제 (Inhibition of Porcine Endogenous Retrovirus Expression by RNA Interference)

  • 이현아;구본철;권모선;김태완
    • Reproductive and Developmental Biology
    • /
    • 제30권3호
    • /
    • pp.181-187
    • /
    • 2006
  • 최근 돼지의 장기를 사람에게 이식하는 이종간 장기 이식에 관한 연구가 급속히 발전되고 있다. 그러나 돼지의 장기를 이식할 경우 가장 큰 문제점 중의 하나는 돼지 genome 내에 존재하는 내인성 레트로바이러스(porcine endogenous retrovirus; PERV)가 인간에게 그대로 전이될 수 있다는 것이다. 이에 대한 대안으로 최근 활발히 연구되고 있는 RNA 간섭을 통한 PERV RNA의 발현을 최대한 억제하는 방법이 제안되고 있는데, RNA 간섭(RNA interference)은 double-standard RNA(dsRNA)가 상보적인 표적 mRNA를 분해하여 결과적으로 표적 단백질의 발현을 특이적으로 억제하는 현상을 의미한다. 본 연구에서는 PERV에 대한 RNA 간섭 현상을 일으키는 shRNA 유전자를 레트로바이러스 벡터를 이용하여 돼지세포에 RNA)가 상보적인 표적 mRNA를 분해하여 결과적으로 표적 단백질의 발현을 특이적으로 억제하는 현상을 의미하다. 도입한 후 PERV의 발현율 감소 여부를 조사하였다. 그 결과, gag-pol 유전자와 env 유전자 발현은 각각 대조군 세포의 4%와 10% 정도로 억제되었다. 한편, virus 입자의 생산에서 gag-pol 유전자는 대조군 세포에 비해 300배 이상 억제되었으며, env 유전자에서는 20만 배 이상 억제되었다. 이상의 결과를 미루어 볼 때 형질 전환 돼지를 이용한 이종 장기 이식에 있어서 RNA 간섭 현상을 이용한 PERV의 발현을 억제하는 시도는 생물학적안전성을 크게 증가시킬 수 있을 것으로 사료된다.

A Simple and Economical Short-oligonucleotide-based Approach to shRNA Generation

  • Kim, Jin-Su;Kim, Hyuk-Min;Lee, Yoon-Soo;Yang, Kyung-Bae;Byun, Sang-Won;Han, Kyu-Hyung
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.329-334
    • /
    • 2006
  • RNAi (RNA interference) has become a popular means of knocking down a specific gene in vivo. The most common approach involves the use of chemically synthesized short interfering RNAs (siRNAs), which are relatively easy and fast to use, but which are costly and have only transient effects. These limitations can be overcome by using short hairpin RNA (shRNA) expression vectors. However, current methods of generating shRNA expression vectors require either the synthesis of long (50-70 nt) costly oligonucleotides or multi-step processes. To overcome this drawback, we have developed a one-step short-oligonucleotides-based method with preparation costs of only 15% of those of the conventional methods used to obtain essentially the same DNA fragment encoding shRNA. Sequences containing 19 bases homologous to target genes were synthesized as 17- and 31-nt DNA oligonucleotides and used to construct shRNA expression vectors. Using these plasmids, we were able to effectively silence target genes. Because our method relies on the onestep ligation of short oligonucleotides, it is simple, less error-prone, and economical.

New paradigms on siRNA local application

  • Pan, Meng;Ni, Jinwen;He, Huiming;Gao, Shan;Duan, Xiaohong
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.147-152
    • /
    • 2015
  • Small interfering RNA (siRNA) functions through pairing with specific mRNA sequences and results in the mRNA's degradation. It is a potential therapeutic approach for many diseases caused by altered gene expression. The delivery of siRNA is still a major problem due to its rapid degradation in the circulation. Various strategies have been proposed to help with the cellular uptake of siRNA and short or small hairpin RNA (shRNA). Here, we reviewed recently published data regarding local applications of siRNA. Compared with systemic delivery methods, local delivery of siRNA/shRNA has many advantages, such as targeting the specific tissues or organs, mimicking a gene knockout effect, or developing certain diseases models. The eye, brain, and tumor tissues are 'hot' target tissues/organs for local siRNA delivery. The siRNA can be delivered locally, in naked form, with chemical modifications, or in formulations with viral or non-viral vectors, such as liposomes and nanoparticles. This review provides a comprehensive overview of RNAi local administration and potential future applications in clinical treatment.

다운증후군의 Dyrk1A 의존적 뇌기능저하의 치료: 인간 Dyrk1A 특이적 shRNA 발굴 (Treatment of Dyrk1A-dependent Mental Retardation of Down Syndrome: Isolation of Human Dyrk1A-specific shRNA)

  • 정민수;김연수;김주현;김정훈;정설희;송우주
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.317-321
    • /
    • 2009
  • 다운증후군은 추가적으로 존재하는 인간염색체 21번에 위치한 유전자의 과발현으로 발병한다. 다운증후군 환자에서 보이는 여러 증상들 중 학습과 기억능력 저하와 같은 뇌기능 저하는 다운증후군 환자가 독립적인 생활을 영위하는데 가장 큰 걸림돌이 된다. 인간염색체 21번에 위치하는 Dyrk1A는 신경발달에 중요한 역할을 하는 단백질로 Dyrk1A를 과발현 하는 형질전환 생쥐에서 심각한 해마 의존적 학습과 기억 장애가 보고되었다. 본 연구에서는 인간 Dyrk1A를 과발현 하는 형질전환 생쥐와 RNA interference (RNAi) 방법을 이용하여 endogenous mouse Dyrk1A의 발현은 정상적으로 유지하면서 exogenous human Dyrk1A 발현은 특이적으로 저해함으로써 인간 Dyrk1A 과발현에 의한 학습과 기억 능력저하를 회복시킬 수 있는지 동물모델에서 검증하기 위한 첫 단계로 인간 Dyrk1A 특이적 lentiviral short hairpin RNA (shRNA)를 발굴하였다. 발굴된 shRNA를 이용한 형질전환 모델생쥐에서의 증상의 회복 가능성 검증은 다운증후군의 뇌기능저하 치료제 개발에 중요한 정보를 제공할 것이다.