• 제목/요약/키워드: Short fiber

검색결과 678건 처리시간 0.025초

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

단섬유 강화고무의 관통 특성 연구 (A Study on Puncture Properties of Short-fiber Reinforced Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제19권6호
    • /
    • pp.16-22
    • /
    • 2006
  • 다양한 조건 하에서 최상의 관통 특성을 발휘하기 위한 최적 조건에 대해 연구하였다. 섬유 종횡비(AR: 섬유 길이/섬유 직경), 계면 조건 그리고 섬유 함유량을 관통 저항력과 마찰력에 지대한 영향을 미치는 변수들로 고려하였다. 단섬유 강화고무의 관통 저항력은 기지에 비해 최대 3.4배 증가하였다. 동일한 섬유 종횡비와 섬유 함유량에서 계면 조건이 우수할수록 더 높은 관통 저항력을 보였다. 기지와 섬유 종횡비가 155이하인 일부 단섬유 강화고무의 마찰력은 존재치 않았다. 우수한 계면과 높은 섬유 종횡비를 갖는 단섬유 강화고무의 마찰력은 기지의 관통 저항력보다도 더 높았다. 전체적으로 계면 조건과 섬유 종횡비 그리고 섬유 함유량이 단섬유 강화고무의 관통 특성에 지대한 영향이 미침을 확인하였다.

단섬유강화 고분자 복합재료의 압축성형에 있어서 섬유배향에 관한 연구 (The Planar Orientation of Fibers During Compression Molding of Short-Fiber Reinforced Polymeric Composites)

  • 김혁;전상기;이동기;한길영;김이곤
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.34-43
    • /
    • 1996
  • In this study basic equations of fiber orientations is cimpared with experimental results. It is found that fiber orientations of short fiber reinforced polymeric composite under compression molding are governed by slope of flow speed in x-y direction. Fiber orientation angle of mold is also found to increase with closure speed and the compression ratio. At the middle of the mold, the slope of flow speed is larger in x-direction than in y-direction. At the wall of the mold, the shope of flow speed in y-direction occurs due to the effect of friction, hence affects the fiber orientation. The effect of partial flow, which incurs y-direction orientation causes to increase the fiber orientation angle at the fore part of the flow.

  • PDF

탄소섬유강화 질화규소 세라믹스의 마찰마모 특성 (Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics)

  • 박이현;윤한기;김부안;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

임의형태(任意形態)의 섬유(纖維)를 가진 복합재료(複合材料) 개발(開發)과 파괴역학(破壞力學)에의 응용(應用)(I) (시편제작을 중심으로) (Development and Application to Fracture Mechanics of Composites with Arbitrary Fiber Size)

  • 박정도
    • 비파괴검사학회지
    • /
    • 제13권1호
    • /
    • pp.7-14
    • /
    • 1993
  • In order to analyze the stress distribution and stress concentration factors in composite materials, especially, in the short fiber of the reinforced composite materials by photoelastic method, it is necessary to develop the photoelastic model material having short fibers with arbitrary size and orientation. In this paper, the orthotropic photoelastic model material having short fibers for the transparent type photoelastic device was developed by the embedded corrosion fiber method. It was found that the model material was satisfactory to the properties of photoelastic model material, and also that the embedded corrosion fiber method can be employed for developing a model material with arbitrary size and direction to analyze the stress distribution and crack problems of composite materials.

  • PDF

단섬유강화 고분자 복합재료에서 사출성형 형상금형 형상변화에 따른 섬유배향상태 (Fiber Orientation of Short Fiber Reinforced Polymeric Composites Depending on Injection Mold Shape Variations)

  • 김혁;한길영;이동기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.778-784
    • /
    • 2001
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed.

  • PDF

단섬유/입자 혼합 금속복합재료의 피로균열진전 거동 (Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites)

  • 오광환;장준호;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

열차모의하중에 대한 단섬유 보강토체의 침하특성 (Settlement Characteristics of Short-fiber Reinforced Soil under Simulated Railroad Loading)

  • 박영곤;김정기;김현기;황선근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.596-600
    • /
    • 2002
  • To analyze the settlement characteristics of short-fiber reinforced soil(SFRS), which will be used as a new backfill material of reinforced retaining wall, under simulated railroad loading, a series of tests with loading condition of 5 Hz frequency and 500,000 cycles were performed. The materials used for tests are soils with SM or ML type, and polypropylene short-fibers with mono-filament(PPM) or fibrillated type(PPF). From the tests, average plastic settlement is low at PPF38(0.3%)(abbreviation of PPF with 38mm length and mixing ratio 0.3%), PPF38(0.5%), PPM60(0.2%) for SFRS using SM soil and at PPF38(0.3%), PPF60(0.2%) for SFRS using ML soil. Elastic settlement is low at PPM60(0.2%) for SFRS using SM soil and at PPM60(0.5%) for SFRS using ML soil.

  • PDF

공초점 레이저 주사 현미경을 이용한 단섬유 복합재료 사출 성형물 내의 섬유 배열 측정 및 수치모사 (Fiber Orientation in Injection-Molded Short Fiber Composites with a Confocal Laser Scanning Microscope and Numerical Simulation)

  • Lee, Kwang-Seok;Le, Seok-Won;Youn, Jae-Ryoun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.201-204
    • /
    • 2001
  • A Confocal Laser Scanning Microscope (CLSM) is applied to determine three-dimensional fiber orientation states in injection-molded short fiber composites. Since the CLSM optically sections the composites, more than two planes either on or below the surface of composites can be obtained. Therefore, three dimensional fiber orientation states are determined without destruction. To predict the orientation states, velocity and temperature fields are calculated by using a hybrid FEM/FDM method. The change of orientation state during packing stage is also considered by employing a compressible Hele-Shaw model. The predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from other effects, which are not considered in the numerical analysis.

  • PDF

계면상 조건이 단섬유 강화고무의 기계적 성질에 미치는 영향 (The Influence of Interphase Condition on Mechanical Properties of Short-Fiber Reinforced Rubber)

  • 류상열;이동주
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.625-633
    • /
    • 2000
  • The mechanical and curing properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The tensile strength exhibits a dilution effect at a low fiber content in each interphase. It is found that the interphase conditions have an important affect on the dilution ratio and critical fiber content. Double coatings of bonding agent 402 and rubber solution become the best interphase model in this study. The yield strength, tensile modulus, tear strength and fracture toughness at rupture, Jr are significantly improved due to fiber concentration.