• Title/Summary/Keyword: Short circuit frequency

Search Result 175, Processing Time 0.023 seconds

SiC MOSFET Compared to Si Power Devices during Short Circuit Test (실리콘 카바이드와 실리콘 MOSFET의 단락회로 특성비교)

  • Nguyen, Thanh That;Ashraf, Ahmed;Park, Joung Hu
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.89-90
    • /
    • 2013
  • Higher power density, higher operational temperature, lower on state resistance and higher switching frequency capabilities of Silicon Carbide (SiC) technology devices compared to Silicon (Si) devices makes it has higher promising market. One of the most developed SiC devices is the power MOSFET. This study tests the SiC MOSFET under short circuit conditions taking into account the effect of gate voltage characteristics. The results will be compared to IGBT and MOSFET Si devices with similar ratings. A tester circuit was designed to perform the short circuit operation.

  • PDF

HF-Band Wireless Power Transfer System with Adaptive Frequency Control Circuit for Efficiency Enhancement in a Short Range (근거리에서 효율 향상을 위해 적응 주파수 제어 회로를 갖는 HF-대역 무선 전력 전송 시스템)

  • Jang, Byung-Jun;Won, Do-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1047-1053
    • /
    • 2011
  • In this paper, we proposed an HF-band wireless power transfer system with adaptive frequency control circuit for efficiency enhancement in a short range. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating loop antennas. The proposed method can compensate this impedance mismatching by varying input frequency of a voltage-controlled oscillator adaptively with respect to separation distance. Therefore, transmission efficiency is enhanced in a short distance, where large impedance mismatch occurs. The adaptive frequency circuit consists of a directional coupler, a detector, and a loop filter. In order to demonstrate the performance of the proposed system, a wireless power transfer system with adaptive frequency control circuits is designed and implemented, which has a pair of loop antennas with a dimension of 30${\times}$30 $cm^2$. From measured results, the proposed system shows enhanced efficiency performance than the case without adaptive frequency control.

Determination of Minority Carrier Lifetime in Solar Cells by the Method of Photoelectric Frequency Modulation (광전 주파수 변조방법에 의한 태양전지의 소수 반송자 수명 측정)

  • 박우상;정호선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.30-35
    • /
    • 1983
  • Numerical calculations have been made about the phase differences of the short circuit current in a solar cell according to the variation of the modulation frequency. The phase differences in short circuit current of the solar cell exposed to the modulated light source is measured experimentally. From the above two results, the minority carrier lifetime has been determined. Also, minority carrier lifetime has been determined from the observed photo-induced open circuit voltage decay wave form that follows termination of the excitation.

  • PDF

A Study on the Implementation of a High Speed Synchronization Circuit Applied in Frequency Hopping FSK Tranceiver (주파수 도약 통신방식 FSK 송수신기의 고속동기회로 구현에 관한 연구)

  • 이준호;전동근;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 1992
  • In this thesis, a high speed code synchronization circuit is implemented, which is applicable to frequency hopping FSK tranceiver within 68-88 MIBz band- width. synchronization Process consists of two steps, initial synchronization and tracking. A modified matched filter method using two channel passive correlators matched with short hopping frequencies, synchronization prcfix. is proposed for initial synchronization. To increase probability of initial synchronization, prefix are transmitted repeatedly. The outputs of correlators are sent to synchronization decision circuit, and code start time Is extracted by synchronizatlon decision circuit-Modified matched fitter method makes it possible to reduce complexity in hardware and obtain code acquisition rapidly.Clock recovery circuit regenerates PN code clock for tracking.

  • PDF

Relationship between Spatter Generation and Waveform Factors in Transitional Condition of $CO_2$ Welding ($CO_2$ 용접의 천이이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 강봉용;이창한;김희진;장희석
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • $CO_2$ gas shielded arc welding has been characterized with its harsh arc compared to Ar-based shielding gases and with its high level of spattere specially in welding current range of 250~300 amperes. In this range of welding current, the metal transfer mode showed to be changed from short circuit to globular with the increase of welding voltage resulting in so-called the transitional mode in which both modes of transfer appeared together. To characterize the transitional mode, the short circuit events were divided into two groups, i.e. normal short circuit (N.S.C) which has short circuit time $(t_s)$ over 2msec and instantaneous short circuit (I.S.C) of $t_s$$\leq$2msec. The experimental results showed that the number of N.S.C decreased almost linearly with the increase of welding voltage and appeared to be not related with spatter generation rate. However I.S.C became to be pronounced in the transitional condition and its number reached the maximum value at around 29.0 volts. Considering the relation with the spatter generation rate, it was found that the number of I.S.C had a very strong correlation with the spatter generation rate of the transitional condition. It was further demonstrated that spatter generation rate decreased quite linearly with the decrease of I.S.C frequency. It implies that I.S.C is the most important waveform factor controlling the spatter generation of the transitional mode, i.e. in the middle range of welding current. Based on these results, It was discussed that in the transitional mode the basic concept of waveform control for suppressing spatter generation would be different from the one applied for typical short circuit transfer mode of low welding current.

  • PDF

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

A case Study for Protection Relay System of small Cogeneration intertie (소형 열병합 발전기 계통연계 운전시의 적용 보호지침 개선 제안)

  • Yoon, K.K.;Kim, K.S.;Hyun, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.227-230
    • /
    • 2004
  • The Co-Gen System which maximize energy efficiency was installed at the industrial plants at the initial stage. However Small Scale Co-Gen System was expanded even to the general end-users such as housing and building owing to ESCO business recently. For this SSC, inter-connected operation to the utility is desirable due to voltage and frequency fluctuation following to unbalance between power output and load. Then voltage unbalance with utility system, frequency, increase of short circuit capacity, reclosing, and ALTS etc. should be fully considered for the inter-connected operation. Voltage variation, protection coordination, Co-Generators single running, and short circuit capacity should also be solved. For Con-Gen users, the several protection relays are recommended to install at the user's main incoming panel by the guide lines and/or instructions of the interconnected utility Then user's main CB(Circuit Breaker) have the chance to be tripped by some of this recommended relays and users have to undergo the unexpected blackout. So the circuit breaker trip schemes targeted to trip with these protection relays are reconsidered and the study result is hereunder proposed.

  • PDF

New Three-Phase Static Transfer Switch using AC SSCB (AC SSCB를 이용한 새로운 3상 Static Transfer Switch)

  • Song, Seung-Min;Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.626-634
    • /
    • 2018
  • These days, widespread use of sensitive loads and distributed generators makes static transfer switch (STS) an essential component in power circuits to achieve a good power quality for AC Grids. In case of a short-circuit fault, previous STS cannot break the fault current. However, the proposed STS has the capability of breaking it quickly as a circuit breaker. Also if there are power quality problems such as Sag/Swell, the proposed STS can quickly transfers the load to the good quality source. Furthermore it is proved that the transfer time of the proposed STS is within one half of period of 3-phase source frequency regardless of the type of load. It is anticipated that the proposed STS may be utilized to realize many stable and reliable AC grid systems.

A CMOS Charge Pump Circuit with Short Turn-on Time for Low-spur PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.873-879
    • /
    • 2016
  • A charge pump circuit with very short turn-on time is presented for minimizing reference spurs in CMOS PLL frequency synthesizers. In the source switching charge pump circuit, applying proper voltages to the source nodes of the current source FETs can significantly reduce the unwanted glitch at the output current while not degrading the rising time, thus resulting in low spur at the synthesizer output spectrum. A 1.1-1.6 GHz PLL synthesizer employing the proposed charge pump circuit is fabricated in 65 nm CMOS. The current consumption of the charge pump is $490{\mu}A$ from 1 V supply. Compared to the conventional charge pump, it is shown that the reference spur is improved by dB through minimizing the turn-on time. Theoretical analysis is described to show that the measured results agree well with the theory.

Analysis of Tripping Characteristics of Earth Leakage Circuit Breakers against Parallel Arcing (병렬아크에 대한 누전차단기의 트립특성 분석)

  • Kim, Il-Kwon;Park, Dae-Won;Choi, Su-Yeon;Cho, Young-Jin;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.478-479
    • /
    • 2007
  • Many electrical fires are occurred by leakage currents and sparks generated by a short circuit. Earth leakage circuit breakers (ELCBs) should be tripped at the moment of the faults mentioned above. In this paper, we described the tripping characteristics of ELCBs against parallel arcing faults. A diesel engine generator with the capacity of 375 kVA source was adopted to provide enough large current when a parallel arcing occurred. The experimental results showed that most ELCBs we experimented were not tripped against short-duration pulse currents produced by parallel arcing because the ELCBs are designed to be tripped by a large current with long duration similar to power frequency.

  • PDF