• Title/Summary/Keyword: Short circuit current

Search Result 1,004, Processing Time 0.026 seconds

Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances (기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석)

  • Song, Jun-Yong;Jeong, Dae-Young;Kim, Chan-Seok;Park, Sang-Hyun;Cho, Jun-Sik;Song, Jin-Soo;Wang, Jin-Suk;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells (염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4013-4018
    • /
    • 2014
  • A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer (PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구)

  • Kim, Seung Ho;Choi, Jae Young;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

A3V 10b 33 MHz Low Power CMOS A/D Converter for HDTV Applications (HDTV 응용을 위한 3V 10b 33MHz 저전력 CMOS A/D 변환기)

  • Lee, Kang-Jin;Lee, Seung-Hoon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.278-284
    • /
    • 1998
  • This paper describes a l0b CMOS A/D converter (ADC) for HDTV applications. The proposed ADC adopts a typical multi-step pipelined architecture. The proposed circuit design techniques are as fo1lows: A selective channel-length adjustment technique for a bias circuit minimizes the mismatch of the bias current due to the short channel effect by supply voltage variations. A power reduction technique for a high-speed two-stage operational amplifier decreases the power consumption of amplifiers with wide bandwidths by turning on and off bias currents in the suggested sequence. A typical capacitor scaling technique optimizes the chip area and power dissipation of the ADC. The proposed ADC is designed and fabricated in s 0.8 um double-poly double-metal n-well CMOS technology. The measured differential and integral nonlinearities of the prototype ADC show less than ${\pm}0.6LSB\;and\;{\pm}2.0LSB$, respectively. The typical ADC power consumption is 119 mW at 3 V with a 40 MHz sampling rate, and 320 mW at 5 V with a 50 MHz sampling rate.

  • PDF

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on Benzo[1,2,5]thiadiazole (Benzo[1,2,5]thiadiazole을 기본 골격으로 한 공액고분자의 합성 및 광전변환특성 연구)

  • Bea, Jun Huei;Lim, Gyeong Eun;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • Alternating copolymers, poly[9-(2-octyl-dodecyl)-9H-carbazole-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PCD20TBT) and poly[9,10-bis-(2-octyl-dodecyloxy)-phenanthrene-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PN40TBT), were synthesized by the Suzuki coupling reaction. The copolymers were soluble in common organic solvents such as chloroform, chlorobenzene, 1,2-dichlorobenzene, tetrahydrofuran and toluene. The maximum absorption wavelength and the band gap of PCD20TBT were 535 nm and 1.75 eV, respectively. The maximum absorption wavelength and the band gap of PN40TBT were 560 nm and 1.97 eV, respectively. The HOMO and the LUMO energy level of PCD20TBT were -5.11 eV and -3.36 eV, respectively. As for PN40TBT, the HOMO and the LUMO energy level of PCD20TBT were -5.31 eV and -3.34 eV, respectively. The polymer solar cells (PSCs) based on the blend of copolymer and PCBM (1 : 2 by weight ratio) were fabricated. The power conversion efficiencies of PSCs based on PCD20TBT and PN40TBT were 0.52% and 0.60%, respectively. The short circuit current density ($J_{SC}$), fill factor (FF) and open circuit voltage ($V_{OC}$) of the device with PCD20TBT were $-1.97mA/cm^2$, 38.2% and 0.69 V. For PN40TBT, the $J_{SC}$, FF, and $V_{OC}$ were $-1.77mA/cm^2$, 42.9%, and 0.79 V, respectively.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk;Lee, Woo-Hyung;Kim, Jae-Ryoung;Lee, Sang-Kyu;Shin, Won-Suk;Moon, Sang-Jin;Park, Jong-Wook;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2011
  • A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Simulation on Optimum Doping Levels in Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.509-514
    • /
    • 2020
  • The two key variables of an Si solar cell, i.e., emitter (n-type window layer) and base (p-type substrate) doping levels or concentrations, are studied using Medici, a 2-dimensional semiconductor device simulation tool. The substrate is p-type and 150 ㎛ thick, the pn junction is 2 ㎛ from the front surface, and the cell is lit on the front surface. The doping concentration ranges from 1 × 1010 cm-3 to 1 × 1020 cm-3 for both emitter and base, resulting in a matrix of 11 by 11 or a total of 121 data points. With respect to increasing donor concentration (Nd) in the emitter, the open-circuit voltage (Voc) is little affected throughout, and the short-circuit current (Isc) is affected only at a very high levels of Nd, exceeding 1 × 1019 cm-3, dropping abruptly by about 12%, i.e., from Isc = 6.05 × 10-9 A·㎛-1, at Nd = 1 × 1019 cm-3 to Isc = 5.35 × 10-9 A·㎛-1 at Nd = 1 × 1020 cm-3, likely due to minority-carrier, or hole, recombination at the very high doping level. With respect to increasing acceptor concentration (Na) in the base, Isc is little affected throughout, but Voc increases steadily, i.e, from Voc = 0.29 V at Na = 1 × 1012 cm-3 to 0.69 V at Na = 1 × 1018 cm-3. On average, with an order increase in Na, Voc increases by about 0.07 V, likely due to narrowing of the depletion layer and lowering of the carrier recombination at the pn junction. At the maximum output power (Pmax), a peak value of 3.25 × 10-2 W·cm-2 or 32.5 mW·cm-2 is observed at the doping combination of Nd = 1 × 1019 cm-3, a level at which Si is degenerate (being metal-like), and Na = 1 × 1017 cm-3, and minimum values of near zero are observed at very low levels of Nd ≤ 1 × 1013 cm-3. This wide variation in Pmax, even within a given kind of solar cell, indicates that selecting an optimal combination of donor and acceptor doping concentrations is likely most important in solar cell engineering.