• Title/Summary/Keyword: Short Circuit

Search Result 1,679, Processing Time 0.031 seconds

Development of Smart ICT-Type Electronic External Short Circuit Tester for Secondary Batteries for Electric Vehicles (전기자동차용 2차전지를 위한 스마트 ICT형 전자식 외부 단락시험기 개발)

  • Jung, Tae-Uk;Shin, Byung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Recently, the use of large-capacity secondary batteries for electric vehicles is rapidly increasing, and accordingly, the demand for technologies and equipment for battery reliability evaluation is increasing significantly. The existing short circuit test equipment for evaluating the stability of the existing secondary battery consists of relays, MCs, and switches, so when a large current is energized during a short circuit, contact fusion failures occur frequently, resulting in high equipment maintenance and repair costs. There was a disadvantage that repeated testing was impossible. In this paper, we developed an electronic short circuit test device that realizes stable switching operation when a large-capacity power semiconductor switch is energized with a large current, and applied smart ICT technology to this electronic short circuit stability test system to achieve high speed and high precision through communication with the master. It is expected that the inspection history management system based on data measurement, database format and user interface will be utilized as essential inspection process equipment.

Three-phase Fault Calculation by IEC 60909 (IEC 60909에 의한 삼상 고장계산)

  • Son, Seok-Geum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • This paper analyzes how to calculate the three phase short circuit current calculation procedures used in the IEC 60909 short circuit. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current. Power demands are increased because of the growth of the economy for this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. How to calculate the three phase short circuit current for ac electrical system and select the high voltage and low voltage circuit breaker based on IEC 60909 standards.

A Technique for a Short-Circuit Current Calculation to The Single-Phase Transformer in the Three-Phase Systems (3상계통에서 단상변압기에 대한 단락전류계산 기법)

  • Park, Jae-Hwae;Jin, Tae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • This paper describes the exact short-circuit current calculation technique for the single-phase transformer which is installed in the three-phase systems and shorted in the secondary side. Not only the results for a short-circuit current calculation in the existing literatures are wrong, but also little literature deals with the short-circuit current for a single-phase transformer. So, this paper presents a theoretical study and calculation method for a single-phase short current. The validity of the presented method is investigated through Simulation using "Power Tools" and "PSim" program.

LOW DIRECT-PATH SHORT CIRCUIT CURRENT OF THE CMOS DIGITAL DRIVER CIRCUIT

  • Parnklang, Jirawath;Manasaprom, Ampaul;Laowanichpong, Nut
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.970-973
    • /
    • 2003
  • Abstract An idea to redce the direct-path short circuit current of the CMOS digital integrated circuit is present. The sample circuit model of the CMOS digital circuit is the CMOS current-control digital output driver circuit, which are also suitable for the low voltage supply integrated circuits as the simple digital inverter, are present in this title. The circuit consists of active MOS load as the current control source, which construct from the saturated n-channel and p-channel MOSFET and the general CMOS inverter circuits. The saturated MOSFET bias can control the output current and the frequency response of the circuit. The experimental results show that lower short circuit current control can make the lower frequency response of the circuit.

  • PDF

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

Analysis on the Short Circuit Current of a Low Voltage Direct Current(DC) Distribution System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 저전압 직류 배전 시스템의 단락 고장 전류 분석)

  • Ahn, Jae-Min;Jeon, Jeong-Chay;Lim, Young-Bae;Bae, Seok-Myeong;Byeon, Gil-Sung;Lee, Kyoung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.473-476
    • /
    • 2010
  • In this paper, we analyzed the short circuit current of a low voltage direct current distribution system. For the analysis, we performed the modeling of the low voltage direct current distribution system with a 6-pulse three-phase thyristor rectifier using the PSCAD/EMTDC, surveyed impedance of sources, transformers and distribution lines to run a simulation. A result of the simulation is that short circuit currents of the direct current distribution system with the rectifier decreased due to a thyristor-ON-resistance(Ron). But in case of the low thyristor-ON resistance, output fault current of the rectifier increased over three-phase short circuit current of an AC power system without a rectifier by regular ratio of the rectifier. Because the output fault current of the rectifier can increase over interrupting the capacity of circuit breakers, studying short circuit currents of a low voltage direct current distribution system with a rectifier is necessary for introducing the direct current distribution systems.

A New Ac-to-Dc Power Converter for a Load with Frequent Short Circuits (부하단락이 빈번히 발생하는 경우에 적합한 교류-직류 전력변환기)

  • No, Ui-Cheol;Kim, In-Dong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.384-390
    • /
    • 1999
  • This paper describes a new ac-to-dc power converter using a multilevel converter. A conventional multilevel ac-to-dc converter has large output dc filter capacitors. When a short circuit happens in a load, the stored energy in the capacitors should be discharged through the load with a high short circuit current. The high current may cause considerable damage to the capacitors and the load. The output dc capacitors of the proposed converter do not discharge even under load short circuit condition. In the case of a load short circuit, the capacitors become a floating state immediately and remain in the state. Then the stored capacitor energy is supplied to the load again as soon as the short circuit has been cleared. Therefore, the rising time of the load voltage can be significantly reduced. This feature satisfies the requirement of a power supply for a load with frequent short circuits. The proposed converter has the characteristics of a simplified structure, a reduced cost, weight, and volume compared with conventional power supplies with frequent output short circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

A Development of Software about Short-circuit Calculation and Protective-coordination (고장계산 및 보호협조 판정 소프트웨어 개발)

  • Park, S.C.;Choe, J.H.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.159-162
    • /
    • 2002
  • A software, called touch-one, is developed about the determination of short-circuit values and protective co-ordination in power system. The used solution algorithm reviewed intensively, and the protective co-ordination determination technique presented by using the circuit-breaker's current-limitation characteristic. The protective coordination concerns the behaviour of two devices placed in series in an electrical network, with a short-circuit downstream circuit-breaker. It has two basic principles: First, discrimination which is an increasing requirement of low voltage electrical distribution systems. Second, which is less well known: cascading, which consists of installing a device, whose breaking capacity is less than the three-phase short-circuit current at its terminals and helped by main circuit-breaker. With this software, we can construct a electric-power system which is reliable and economic according to user's purpose.

  • PDF

Analytical Examination of KERI Synthetic Short-circuit Current Making Test Circuit (KERI 합성투입시험회로의 해석적 고찰)

  • Lee, Yong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.455-457
    • /
    • 2003
  • In the present IEC 60427(2000), reduced applied voltage can be used for synthetic short-circuit making current tests if the maximum pre-arcing time of the test circuit breaker is less than $1/{\omega}$. But in the near future IEC, only the making tests with full test voltage shall be allowed. To meet this trend, KERI is preparing synthetic making test facilities using step-up transformer, ITMC and plasma making switch. This paper presents analytical characteristics of KERI's synthetic short-circuit making test circuits. The results of this paper can be useful for effective and adequate tests.

  • PDF

A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence (철제펜스로 지지된 동력배선의 단락.지락에 의한 전기화재 발생 개연성 연구)

  • Kim, Jeong-Hun;Park, Byoung-Ki;Song, Jong-Hyeok;Jung, Ki-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2007
  • Short circuit and ground fault account for the primary causes of electrical fires. In this research, real-scale experiments were conducted to assess the possibility of electrical fires due to these causes. The experiment conditions were identical with an actual fire accident, in which the power cable was supported by an iron fence. The purposes of this research are to investigate the short circuit caused by wire cutting, the conductivity of the iron fence depending on its coating conditions, and the ground fault of one wire or two wires in an effort to reconstruct the fire accident. The test results show that, owing to the instant operation of circuit breaker in the moment of short circuit or ground fault, the generated ignition energy is far less than necessary to start an ignition. Therefore it is concluded that electrical fire is highly unlikely if the electric system is protected by a circuit breaker with normal functions.