• Title/Summary/Keyword: Short Chain Fatty Acid

Search Result 194, Processing Time 0.024 seconds

Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice (스트렙토조토신으로 유도한 당뇨마우스에서 Sodium Butyrate의 혈당, 혈청 지질 성상 및 염증 억제에 미치는 영향)

  • Yun, Jung-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2015
  • Sodium butyrate is a short-chain fatty acid derivative found in foods, such as Parmesan cheese and butter and is produced by anaerobic bacteria fermentation of dietary fibers in the large intestine. There have been reports that butyrate prevented obesity, protected insulin sensitivity, and ameliorated dyslipidemia in dietary obese mice. This study investigated the effects of sodium butyrate on fasting blood glucose level and serum lipid profile in streptozotocin(STZ)-induced diabetic mice. Male C57BL/6 mice were fed AIN-93G for four weeks prior to intraperitoneal injections with STZ (100 mg/kg body weight). Diabetic mice had supplements of 5% sodium butyrate for four weeks. The 5% sodium butyrate diet significantly improved fasting blood glucose level and lipid profile in STZ-induced diabetic mice. Inflammation has been recognized to decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can directly affect beta cell function, leading to secretory dysfunction and increased apoptosis. Thus, anti-inflammatory therapies represented a potential approach for the therapy of diabetes and its complications. In this animal study, the 5% sodium butyrate supplementation also inhibited inflammatory cytokine production in STZ-induced diabetic mice. These results suggested that sodium butyrate can be a potential candidate for the prevention of diabetes and its complications.

Recent advances on next-generation probiotics linked to the gut microbiome (장내 마이크로바이옴과 차세대 프로바이오틱스 연구 현황)

  • Choi, Hak-Jong
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.261-271
    • /
    • 2019
  • Gut microbiome have recently provided evidence that the gut microbiota are capable of greatly influencing all aspects of physiology and immunology. Although a number of recent studies have shown that probiotics can modulate gut microbiota structure, the mechanism underlying this effect remains to be elucidated. In a disease state, the relative abundances of beneficial gut bacteria are generally reduced, which is restored by constant probiotic supplementation. Oral administration of probiotics improved the disease state by (1) inducing differentiation and function of regulatory T cells, (2) reducing inflammatory response, (3) modulating the gut environment, and (4) increasing the proportions of short-chain fatty acid- or beneficial metabolite-producing gut microbiota including the genera Bifidobacterium, Faecalibacterium, Akkermansia, etc. In this review, current knowledge on how probiotics can influence host's health by altering gut microbiota structure and on how probiotics and beneficial gut bacteria can be applied as next-generation probiotics will be discussed.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

Beet pulp as soluble fiber source and dietary energy levels for growing pigs under heat stress

  • Yo Han Choi;Ye Jin Min;Da Yeon Jeon;Hyun Ju Jin;Yong Dae Jeong;Hyun Ju Park;Abdolreza Hosseindoust;Sang Hun Ha;Jun Young Mun;Jin Soo Kim;Jo Eun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.989-1001
    • /
    • 2023
  • The study evaluated the effects of dietary fiber and energy levels administered during two growing periods (d 0-28 and d 29-56) for pigs exposed to a high temperature. A total of 96 growing pigs were used in six treatments as: Two treatments in thermoneutral temperature (21℃-24℃) with dietary energy of 3,300 and the inclusion of high or low fiber, two treatments in heat stress (30℃-34℃) with dietary energy of 3,300 and the inclusion of high or low fiber, and two treatments in heat stress with dietary energy of 3,450 and the inclusion of high or low fiber. Among standard energy level treatments, heat-stressed pigs showed lower average daily gain (ADG), feed intake, digestibility of dry matter, gross energy, crude protein, and crude fiber in phases 1 and 2. Moreover, higher concentrations of acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) in feces were shown in pigs fed high fiber diets. There was a negative interaction between dietary fiber and energy for the fecal concentration of isobutyrate in phase 1 and valerate in phase 2. Pigs in heat stress treatments showed a higher rectal temperature, respiratory rate, hair cortisol, plasma zonulin, and fecal lipocalin-2. Among heat stress treatments, the overall ADG was increased in pigs fed high fiber. Pigs fed high dietary fiber showed a greater concentration of acetate, propionate, butyrate, and total SCFA. High fiber treatments decreased plasma zonulin. In conclusion, the inclusion of beet pulp, soluble fiber, at the level of 4% looks necessary in pigs diet during heat stress.