• Title/Summary/Keyword: Short Baseline

Search Result 275, Processing Time 0.02 seconds

Impact of Tropospheric Delays on the GPS Positioning with Double-difference Observables (대류권 지연이 이중차분법을 이용한 GPS 측위에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • In general, it can be assumed that the tropospheric effect are removed through double-differencing technique in short-baseline GPS data processing. This means that the high-accuracy positioning can be obtained because various error sources can be eliminated and the number of unknown can be decreased in the adjustment computation procedure. As a consequence, short-baseline data processing is widely used in the fields such as deformation monitoring which require precise positioning. However, short-baseline data processing is limited to achieve high positioning accuracy when the height difference between the reference and the rover station is significant. In this study, the effects of tropospheric delays on the determination of short-baseline is analyzed, which depends on the orientation of baseline. The GPS measurements which include tropospheric effect and measurement noises are generated by simulation, and then rover coordinates are computed by short-baseline data processing technique. The residuals of rover coordinates are analyzed to interpret the tropospheric effect on the positioning. The results show that the magnitudes of the biases in the coordinate residuals increase as the baseline length gets longer. The increasing rate is computed as 0.07cm per meter in baseline length. Therefore, the tropospheric effects should be carefully considered in short-baseline data processing when the significant height difference between the reference and rover is observed.

ESTIMATING NEAR REAL TIME PRECIPITABLE WATER FROM SHORT BASELINE GPS OBSERVATIONS

  • Yang, Den-Ring;Liou, Yuei-An;Tseng, Pei-Li
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.410-413
    • /
    • 2007
  • Water vapor in the atmosphere is an influential factor of the hydrosphere cycle, which exchanges heat through phase change and is essential to precipitation. Because of its significance in altering weather, the estimation of water vapor amount and distribution is crucial to determine the precision of the weather forecasting and the understanding of regional/local climate. It is shown that it is reliable to measure precipitable water (PW) using long baseline (500-2000km) GPS observations. However, it becomes infeasible to derive absolute PW from GPS observations in Taiwan due to geometric limitation of relatively short-baseline network. In this study, a method of deriving Near-Real-Time PW from short baseline GPS observations is proposed. This method uses a reference station to derive a regression model for wet delay, and to interpolate the difference of wet delay among stations. Then, the precipitable water is obtained by using a conversion factor derived from radiosondes. The method has been tested by using the reference station located on Mt. Ho-Hwan with eleven stations around Taiwan. The result indicates that short baseline GPS observations can be used to precisely estimate the precipitable water in near-real-time.

  • PDF

Review on Underwater Positioning for Deep Towing Vehicles (심해 예인 탐사장비의 위치 보정에 대한 고찰)

  • Lee, Gun-Chang;Ko, Young-Tak;Yoo, Chan-Min;Chi, Sang-Bum;Kim, Jong-Uk;Ham, Dong-Jin
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.335-339
    • /
    • 2005
  • The underwater positioning system is important in interpreting data that are acquired from towing vehicles such as the deep-sea camera (DSC) system. Currently, several acoustic positioning systems such as long baseline (LBL), short baseline (SBL), and ultra short baseline (USBL), are used for underwater positioning. The accurate position of DSC, however, could not be determined in a R/V Onnuri unequipped with any of these underwater positioning systems. As an alternative, the DSC position was estimated based on the topography of towing track and cable length in the cruises before 1999. The great uncertainties, however, were found in the areas of flat bottom topography. In the 2003 and 2004 cruises these uncertainties were reduced by calculating the position of DSC with the cable length and seafloor depth below the vessel. The Japanese cruises for Mn-nodule used a similar estimation method for the DSC positioning system with a CTD sensor. Although the latter can provide better information for the position of DSC, the USBL underwater positioning system is strongly recommended for establishing better positioning of DSC and other towing devices.

Acoustic theory application in ultra short baseline system for tracking AUV

  • Ji, Daxiong;Liu, Jian;Zheng, Rong
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • The effective tracking area of ultra short baseline (USBL) systems strongly relates to the safety of autonomous underwater vehicles (AUVs). This problem has not been studied previously. A method for determining the effective tracking area using acoustic theory is proposed. Ray acoustic equations are used to draw rays which ascertain the effective space. The sonar equation is established in order to discover the available range of the USBL system and the background noise level using sonar characteristics. The available range defines a hemisphere like enclosure. The overlap of the effective space with the hemisphere is the effective area for USBL systems tracking AUVs. Lake and sea trials show the proposed method's validity.

The Baseline Analysis of GPS Using L1/L2 Carrier Phase In Short Baseline (단기선에서 L1/L2 반송파를 이용한 GPS 기선해석)

  • 강준묵;박정현;선재현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.81-86
    • /
    • 2003
  • As the utility value of GPS in surveying field is on the increase after the conversion into the world geodetic system, it is attracting the interest of many people involved in the application of GPS. In this study an algorithm was established settling ambiguity through LAMBDA techniques and the baseline processing program was developed for L1/L2 carrier phase using visual c++ 6.0, which is an object-oriented language. And the developed program proved that it maintained a difference of less than 3mm over the short baseline of 1.5m or shorter when compared with other commercialized programs.

  • PDF

Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions (배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

A High-rate GPS Data Processing for Large-scale Structure Monitoring (대형구조물 모니터링을 위한 high-rate GPS 자료처리)

  • Bae, Tea-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.181-182
    • /
    • 2010
  • For real-time displacement monitoring of large-scale structures, the high-rate (>1 Hz) GPS data processing is necessary, which is not possible even for the scientific GPS data processing softwares. Since the baseline is generally very short in this case, most of the atmospheric effects are removed, resulting in the unknowns of position and integer ambiguity. The number of unknowns in real-time kinematic GPS positioning makes the positioning impossible with usual approach, thus two-step approach is tested in this study.

  • PDF

Sensitivity Analysis of Long Baseline System with Three Transponders (세 개의 트랜스폰더로 이루어진 장기선 위치추적장치의 민감도 해석)

  • Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • Underwater acoustic navigation systems are classified into three systems: ultra-short baseline (USBL), short baseline (SBL), and long baseline (LBL). Because the USBL system estimates the angle of a submersible, the estimation error becomes large if the submersible is far from the USBL transducer array mounted under a support vessel. SBL and LBL systems estimate submersible's location more accurately because they have wider distribution of measuring sensors. Especially LBL systems are widely used as a navigation system for deep ocean applications. Although it is most accurate system it still has estimation errors because of noise, measurement error, refraction and multi-path of acoustic signal, or wrong information of the distributed transponders. In this paper the estimation error of the LBL system are analyzed from a point of sensitivity. It is assumed that the error exists only in the distance between a submersible and the transponders. For this purpose sensitivity of the estimated position with respect to relative distances between them is analyzed. The result says that estimation error is small if the submersible is close to transponders but not near the ocean bottom.

  • PDF

A Base Study on the Accuracy Analysis of GPS Kinematic Surveying of the Long-Baseline According to the Ephmeris (궤도력에 따른 장기선 GPS 이동측량의 정확도 분석에 관한 기초연구)

  • 강준묵;이용욱;박정현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • Kinematic GPS surveying which can obtain much 3D topographical information through short-time measurement is being utilized mainly in the short baseline less than a few kilometers. Because the decision of position for the long baseline depends on the static GPS surveying which needs long time measurement, the method for measuring the position of long baseline is needed. In this study, the accuracy of the baseline according to the baseline distance, ephemeris, and observation time by GPS surveying is analysed to confirm the application of kinematic GPS surveying for the long baseline. As the result of this, the acquisition of 3D topographical information by GPS surveying in a few minutes will be possible when PDOP is less than 4, and the fast precise ephemeris is used within 60 km. Also, the accuracy is similar to that of final precise ephemeris of IGS. If a lot of studies about the long baseline kinematic GPS surveying are processed, the acquisition of topographical information for various industry including land development will be obtained more efficiently.

  • PDF

Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)

  • Shimaa Farouk;Mahmoud El-Nokrashy;Ahmed Abd-Elhay;Nasr Saba
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.113-122
    • /
    • 2023
  • Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultrarabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600-1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.