• Title/Summary/Keyword: Shoot Yield

Search Result 384, Processing Time 0.031 seconds

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Changes of Biomass of Green Manure and Rice Growth and Yield using Leguminous Crops and Barley Mixtures by Cutting Heights at Paddy (두과 녹비작물과 보리 혼파 이용 시 예취 높이에 따른 Biomass와 벼 생육 및 수량 변화)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Oh, Gye-Jeong;Kim, Min-Tae;Lee, Yong-Hwan;Kang, Ui-Gum;Lee, Hyun-Bok;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.192-197
    • /
    • 2012
  • The competition between green manure and forage crops frequently occurred at agricultural field because of soil fertility and livestock feeding selection. These experiments were carried out to evaluate the effects shoot and residue for green manure and forage production by leguminous crops and barley mixtures at paddy. Field experiments were conducted at paddy soil from 2008 to 2009. Treatments consisted of mixture and inter-seeding of barley and leguminous crops (hairy vetch and crimson clover). These treatments were divided into cutting height of 8 and 25 cm for using of green manure and forage at once. The residue biomass of 25 cm cutting height was higher than 8 cm and were no significantly between mixture and inter-seeding. However, residues of legume crop were significantly higher at inter-seeding than mixture. The shoot biomass of 8 cm cutting height was higher than 25 cm for forage using. The production of legume crop was high at the barley and hairy vetch seeding plot. The mixture of hairy vetch and barley showed the best biomass of shoot and residue for green manure and forage using at 25 cm of cutting height. Also this treatment could be possible to rice cultivation by no fertilization. Therefore, we suggested that 25 cm cutting of hairy vetch and barley mixture could be used for green manure and forage at the same time under rice-based cropping system.

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

Effect of Sludge-Fertilizer on Growth of Horticultural Plants (스럿지비료(肥料)가 원예작물(園藝作物)의 생육(生育)에 미치는 효과(效果))

  • Ku, Ja Hyeong;Kim, Tae Ill;Ahn, Joo Won;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.16-27
    • /
    • 1992
  • To determine a potential of new sludge fertilizer for horticultural crops, comparative studies between commercial fertilizers (Jandibiryo and Wonyebokbi) and sludge fertilizer (Sludgebiryo) were made through examining the growth responses on zoysiagrass (Zoysia japponica Steud.) and several horticultural plants. 1. The pH of new sludge fertilizer remained near 6.5 regardless the particle size. The solubility of elements was highest in phosphorus, followed by nitrogen and potassium in the order. Especially, desorption of potassium was continued up to 48 hrs after solubilization. 2. There was an increase in shoot number per plant, length of stolon and rhizome, and root weight as well as clipping yield of zoysiagrass in the treatment of large size Sludgebiryo compared to small one and Jandibiryo. 3. Regardless the size of fertilizers, Sludgebiryo increased flower numbers in salvia (Salvia officinalis L. 'Hatzazz') compared to Wonyebokbi, although the difference was not great, However, leaf area and fresh weight of plant were more increased in Wonyebokbi application. 4. Flower diameter of marigold (Tagetes erecta L. 'Inca') was slightly increased in Sludgebiryo application, but the average number of lateral shoots and fresh weight per plant were significantly increased in the treatment of Wonyebokbi application. 5. Sludgebiryo effectively increased the length of both main and lateral shoots, number of flowers and weight of shoot in vinca (Vinca rosea L. 'Little Linde'), but root growth of plant was higher in Wonyebokbi application. 6, No differences between Wonyebokbi and Sludgebiryo were found in promoting the growth of leaves of perilla (Perilla frutescens Hara 'Yubsil' ), but chlorophyll content and seed weight were slightly higher in the application of Wonyebokbi compared to Sludgebiryo. In conclusion, the effectiveness of Sludgebiryo for horticultural plants was almost equal to commercial fertilizers such as Jandibiryo or Wonyebokbi. Expecially, Sludgebiryo appeared to effective on the growth of zoysiagrass, and the increase of flower size and numbers in flower crops. Results indicate that new-made Sludgebiryo can be recommended for turfgrass culture, and the flower crops in which quality depends on flower number and flower size.

  • PDF

Effect of the Elevated Carbon Dioxide on the Growth and Physiological Responses of Peach 'Mihong' (CO2 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 2021
  • This study was conducted to investigate the effect of elevated carbon dioxide on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different carbon dioxide conditions based on climate change scenarios RCP 8.5 in the sunlight phytotron rooms from April 22 to July 6, 2020; 400 µmol·mol-1(present condition), 700 µmol·mol-1 treatment(expecting carbon dioxide concentrations in mid-21st century), 940 µmol·mol-1 treatment (expecting carbon dioxide concentrations in late 21st century). The average of maximum photosynthesis rate at 700 µmol·mol-1(16.06 µmol·CO2·m-2·s-1) was higher than those at 400 µmol·mol-1(14.45 µmol·CO2·m-2·s-1) and 940 µmol·mol-1(15.96 µmol·CO2·m-2·s-1) from May 22 to July 2. However, stomatal conductances at 700 µmol·mol-1 and 940 µmol·mol-1 were lower than those at the control. Also, the carbon dioxide saturation point in all treatments was reduced from 1,200 µmol·mol-1 in the early stage of growth to 600-800 µmol·mol-1 in the late stage of growth. The stomatal densities were decreased as carbon dioxide increased. The shoot lengths were decreased while the carbon dioxide was increased, but the increase of trunk diameter and leaf areas, shoot numbers were not statistically different. The fruit weight at 700 µmol·mol-1(152.5 g) was higher than those at the control(141.8 g) and 940 µmol·mol-1(147.4 g). The soluble solids were higher at 700 µmol·mol-1, 940 µmol·mol-1 compared to the control. These results suggest that a carbon dioxide elevated to 700 µmol·mol-1 in the future may give a positive effect on the yield and fruit quality of peach 'Mihong' while a carbon dioxide elevated above 940 µmol·mol-1 may affect negatively such as early senescence and loss of fruit set.

Optimum Culture Conditions of Sweetpotato Stem Cut for Shoot-transplant Production during Winter (고구마 줄기묘의 원동육묘 적정조건)

  • 안영섭;정병춘;정미남;오용비;송연상;민경수;강윤규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.6
    • /
    • pp.382-386
    • /
    • 2000
  • This study was conducted to know the optimum conditions for overwinter culture of sweetpotato stems in PE film house. The stems will be used as transplant shoots in the next year instead of sprouts produced from storage roots. Sweetpotato stems were cut at field on harvest season and planted in PE film house under three different conditions of PE film mulching, tunnel, or mulching plus tunnel in comparison with the non-treatment of PE film on October 10 and November 10. The survival rate of sweetpotato stems, which was evaluated on April 10 after overwinter, was higher in the treatment planted on October 10 than that on November 10, and with PE film treatments, it was higher in tunnel or mulching plus tunnel than that of the non-treatment of PE film. The survival rate of sweetpotato stems to planting densities was 95-96% in 10$\times$2cm (333 stems/$m^2$) or in 10$\times$4cm (250 stems/$m^2$) when compared with 10$\times$2cm (500 stems/$m^2$). The survival rate under low temperature showed 95% until 20 days at 5$\pm$1$^{\circ}C$, and 0% within 5 days at 2$\pm$1$^{\circ}C$. From these results, it was concluded that there were optimum conditions that cutting time is middle October, planting density is 10$\times$3cm, and minimum maintenance temperature is 5$^{\circ}C$ in growing conditions of sweetpotato stems. Root yield produced by trans-planting shoots using the stems was similar to yield by shoots produced from roots, and the survival rate was not different among varieties.

  • PDF

Comparison of Irrigation and Drainage Volumes, Growth and Fruit Yield under Different Automated Irrigation Methods in Tomato Rockwool Hydroponics (토마토 암면 고형배지경에서 급액방식에 따른 급배액량, 생육 및 과실 수량 비교)

  • Yoon, Bumhee;Cho, Eunkyung;Baek, Jeonghyeon;Cho, Ilhwan;Woo, Younghoe;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This study is to compare irrigation efficiency between sap flow sensor automated system (SF) and conventional irrigation system based on integrated solar radiation automated system (ISR) in tomato rockwool hydroponics. Total irrigated volumes was higher in the ISR system by 5.0L per plant, a lower drainage rate was found in the SF system, compared to the ISR system. There was no difference in shoot and fruit fresh weights, water use efficiency (WUE) and water amount consumed for producing 200g of tomato fruit. The daily average sap flow density (SFD) was closer to the change of solar irradiance (SI) in the plant grown under the SF system, compared to the ISR system. The correlation coefficient (r2) between the fruit diameter and the volumetric water content during the 56 and 82 days after transplant showed the SF treatment was higher than the ISR at night and daytime, and the correlation was higher at night time. The sap flow density and humidity deficit (HD) of SF treatment was related as closely as the solar irradiance. Further studies should demonstrate that SF irrigation system is a convenient method for hydroponic farmers with advantages, such as growth, higher yield, WUE, and accuracy.

Studies on Physiological Reactions of Soybean Cultivars Tolerant and Susceptible to Rust (Phskopsora pachyrhizi Syd.) (대두 녹병에 대한 내병성 및 이병성 품종의 생리적 반응)

  • 신두철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.440-446
    • /
    • 1986
  • The physiological reaction of two soybean (Glycine max (L.) Merrill) cultivars tolerant and susceptible to rust (Phakopsora pachyrhizi Syd.) was studied at the AVRDC in Taiwan, ROC. The rust epidemic on the susceptible cultivar began earlier and progressed more rapidly than on the tolerant cultivar. The defoliation by rust infection increased rapidly after the latter half of pod filling. The reduction of LA! by rust in the susceptible cultivar occurred earlier than in the tolerant cultivar. The differences in the chlorophyll content between the rust-free and rust-infected plants was 2.04% in the tolerant, and 16.43% in the susceptible cultivar. The shoot dry weight increased at each growth stage in the fungicide protected plots, but decreased in the non-fungicide protected plots after the R6 growth stage onward and the tendency to decrease was more severe in the susceptible than in the tolerant cultivar. The pod and seed dry weight of the suscep-tible cultivar in the fungicide-protected plot increased dramatically from the R6 growth stage, but in the non-fungicide plot, there was almost no increase in pod and seed dry weight from R6 growth stage, due to rust. The number of empty pods and imperfect grains were increased by rust infection, but the protein content was not afftected. There were reductions of oil content, seed length, seed width, seed thickness, pod thickness, number of pods and seeds, 100 seed weight, and yield due to rust infection. The yield losses by rust infection were 22.3%in the tolerant and 68.7% in the susceptible cultivar.

  • PDF