• 제목/요약/키워드: Shoes process management monitoring system

검색결과 2건 처리시간 0.027초

LabVIEW를 이용한 SCM 지원 신발 공정관리 모니터링 시스템 개발 (Development of Shoes Process Management Monitoring System for Supporting SCM Using LabVIEW)

  • 이병우;김창동;이영진;고석조
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.135-143
    • /
    • 2005
  • The shoes process management monitoring system for supporting SCM is developed in this study. This system consists of a monitoring program, a conveyer system, a pneumatic unit, a controller, an USB camera, and a server and a client computer. To operate the developed system easily, the monitoring program using LabVIEW in the Windows environment is developed. This program consists of 5 modules: production management, inventory control, media management, defective management, and communication management. The developed system has several advantages: reduced time for managing process work, decreased labor costs, effective operation, and continuous work without an operator. Nowadays advanced manufacturing companies are trying to find a way to check the performance of their production equipments and plants from remote sites. Thus, to manage the developed system from remote sites, communication network is constructed. In order to evaluate the performance of the monitoring system, experiments were performed. The experimental results showed that the developed system provided a reliable performance and a stable communication.

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF