• Title/Summary/Keyword: Shock-Test

Search Result 980, Processing Time 0.03 seconds

Study on Shock Absorb Effect in front Section of Missile Warhead (유도탄 탄두의 전방구조물 완충효과 연구)

  • Yeom Kee-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.118-125
    • /
    • 2004
  • In anti-ship missile, the seeker and guidance control units are located in front of warhead. When the missile hits target, these structures play an important role to warhead structure like a shock absorber Because the shock waves are attenuated, the survival probability of warhead increases which guarantees the explosive train. In this thesis the role of frontal sections is studies. The theoretical analysis and numerical analyses using LS-DYNA code are performed. To prove the effect of shock absorber, the penetration test using subscale prototype warhead are executed.

Experimental Study of a Scramjet Engine Intake in a Storage Heater Type Hypersonic Wind Tunnel (축열식 가열기형 풍동을 이용한 스크램제트 엔진 흡입구 실험연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.463-466
    • /
    • 2010
  • A scramjet engine intake model was tested with a storage air heater type hypersonic wind tunnel. In test results, there is no large performance change with the variation of the sidewall configurations. In the isolator performance analysis, pressure distribution of oblique shock train and normal shock train was observed. Unstart limit of the model was also confirmed.

  • PDF

A study on the hazard of electric shock for 220V domestic receptacles (220V 가정용 콘센트에 대한 감전위험성 연구)

  • 한기붕;정세중;이대종
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.671-674
    • /
    • 2000
  • A children's electric shock accidents have broken out because children can easily insert sharp things in 220V receptacle holes. As the test result of pushing force, children's pushing force was about 2-4kg and the pushing force of sharp things was less than 2kg. Therefore, it is reason for electric shock that children's pushing force is large than pushing force of sharp things. We have measured insulation resistance for the receptacles of five companies during 50 weeks in humid condition. As these results, Insulation resistance for the receptacles of J. Co. had rapidly decreased with lapse of time. As the result for investigating the surface of receptacle by SEM and EDX, Al, Fe and Br, which weren't discovered at original form, were produced. Therefore, the receptacles of J. Co. should be the improved in the quality of insulating material because insulation resistance can be decreased in humid environment

  • PDF

The Effect of Pyro Shock on Canister with Composite Sandwich Panel (복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석)

  • Choi, Wonhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화)

  • Lee Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

Test-particle Solutions for Electron Acceleration in Low Mach Number Shocks

  • Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and reacceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model.

  • PDF

Microstructure and Thermal Shock Properties of SiC Materials (SiC 재료의 미세조직 및 열충격 특성)

  • Lee, Sang-Pill;Cho, Kyung-Seo;Lee, Hyun-Uk;Son, In-Soo;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2011
  • The thermal shock properties of SiC materials were investigated for high temperature applications. In particular, the effect of thermal shock temperature on the flexural strength of SiC materials was evaluated, in conjunction with a detailed analysis of their microstructures. The efficiency of a nondestructive technique using ultrasonic waves was also examined for the characterization of SiC materials suffering from a cyclic thermal shock history. SiC materials were fabricated by a liquid phase sintering process (LPS) associated with hot pressing, using a commercial submicron SiC powder. In the materials, a complex mixture of $Al_2O_3$ and $Y_2O_3$ powders was used as a sintering additive for the densification of the microstructure. Both the microstructure and mechanical properties of the sintered SiC materials were investigated using SEM, XRD, and a three point bending test. The SiC materials had a high density of about 3.12 Mg/m3 and an excellent flexural strength of about 700 MPa, accompanying the creation of a secondary phase in the microstructure. The SiC materials exhibited a rapid propagation of cracks with an increase in the thermal shock temperature. The flexural strength of the SiC materials was greatly decreased at thermal shock temperatures higher than $700^{\circ}C$, due to the creation of microcracks and their propagation. In addition, the SiC materials had a clear tendency for a variation in the attenuation coefficient in ultrasonic waves with an increase in thermal shock cycles.

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

A Study on the Shock Resistance against Underwater Explosion of Ship-born Vertical Launch Type Air-vehicle by Using the Modeling and Simulation (모델링 및 시뮬레이션 기반의 함정용 수직발사형 발사체의 수중폭발 충격에 대한 내충격성 확보 방안 연구)

  • Seungjin Lee;Jeongil Kwon;Kyeongsik You;Jinyong Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study examines the response when the shock by underwater explosion is transmitted to a vertical launch air-vehicle mounted on a ship using modeling and simulation, and is about a plan to increase method shock resistance to protect the air vehicle. In order to obtain an accurate mathematical model, a dynamic characteristic test was performed on similar equipment, and through this, the mathematical model could be supplemented. And, using the supplemented mathematical model, the air vehicle simulated the shock response by the underwater explosion specified in the BV043 standard. As a result of the first simulation, it was confirmed that air vehicle could not withstand shock, and air vehicle protection method using a ring spring type shock absorber was studied. In addition to the basic shape of abosber, it was confirmed that the ring spring absober can be used to increase the impact resistance of a shipborn vertical launch vehicle by performing simulations for each case by changing deseign varables.

Comparative Study on the Several Types of Double-Acting Oleo-Pneumatic Shock Absorbers of Aircraft Part II. Numerical Analysis and Comparison (항공기 올레오식 2중 완충기 종류에 따른 특성 비교 연구 Part II. 수치해석 및 비교)

  • Jeong, Seon Ho;Lee, Cheol Soon;Kim, Jeong Ho;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.951-966
    • /
    • 2017
  • In this work, numerical analyses are carried out and the behaviors are investigated for three types of double-acting oleo-pneumatic shock absorbers along with the mathematical models proposed in the part I of this work. After presenting each numerical algorithm corresponding to each model, the numerical algorithms are implemented as user-subroutines in MSC/ADAMS commercial multi-body dynamic software. By using the developed user-subroutines, numerical studies are carried out for compression/stretch test as well as drop test. From the comparative studies, we investigated the salient feature of each double-acting oleo-pneumatic shock absorber. Results identifies that it is possible to increase the absorbing efficiency in accordance with the requirements for aircraft landing conditions.