• Title/Summary/Keyword: Shock absorbing characteristics

Search Result 22, Processing Time 0.035 seconds

The Effect of Shape of Core Cell on Shock Absorption Characteristics of Biomimetically Inspired Honeycomb Structures

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.103-108
    • /
    • 2011
  • The effect of the core cell shape on shock absorption characteristics of biomimetically inspired honeycomb structures has been numerically investigated. The finite element models of honeycomb test specimen composed of five core cells of identical mass have been constructed, and numerical simulations have been run on PAMCRASH. The dimensions of the sides of core cells as well as the angle between the sides have been shown to influence the shock absorption characteristics of the honeycomb structure. The specimen with regular hexagonal core cell shape is found to show the best shock absorbing capacity, and specimen with rectangle-like core cell are found to provide good shock absorbing characteristics.

  • PDF

소형항공기용 고정식 착륙장치의 동적특성에 관한 연구

  • Choi, Sun-Woo;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.191-196
    • /
    • 2004
  • Most of studies for landing gear have been performed to analyze the shock absorbing characteristics of oleo-pneumatic struts. But it is not easy to solve the dynamic specific properties of spring type composite landing gear using a present method. The shock absorbing abilities of oleo-pneumatic landing gear strut are under influence of the internal design method on the strut rather than the landing gear structure itself. Unlike oleo type, spring type composite strut absorbs the shock with structural strength and dynamic characteristics of the strut's material and shape. The tests and analysis for the shock absorbing rate and dynamic behavior of the spring type composite fixed landing gear for 4 seats small aircraft, have been performed using landing gear drop test rig.

  • PDF

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

Prediction to Shock Absorption Energy of an Aluminum Honeycomb (알루미늄 허니콤의 충격 에너지 흡수 특성 예측)

  • Kim, Hyun-Duk;Lee, Hyuk-Hee;Hwang, Do-Soon;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-399
    • /
    • 2011
  • The purpose of this paper is to predict the shock absorbing characteristics of the aluminum honeycomb in a lunar lander. Aluminum honeycomb has been used for shock absorbers of lunar lander due to its characteristics such as light weight, high energy absorption efficiency and applicability under severe space environments. Crush strength of the honeycomb should have strength to endure during shock energy absorbing process. In this paper, the crush strength, which depends on the shape of honeycomb and impact velocity, is estimated using FEM. Ls-dyna is used for finite element analysis of the honeycomb shock absorber. The unit cells of the honeycomb shape are modeled and used for the finite element analysis. Energy absorption characteristics are decided considering several conditions such as impact velocity, foil thickness and branch angle of the honeycomb.

Effects of Mixing Ratio of ONP and OCC on Physical Properties of Pulp Molds for Cushion Packaging Materials (완충포장소재를 위한 고지배합비율에 따른 펄프몰드의 물성 변화 연구)

  • Park, In-Sik;Kim, Jai-Neung;Kim, Dae-Yong;Lee, Youn-Suk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2008
  • As the demands of environment protection increases, the pulp mold container is developed to substitute for EPS (expanded polystyrene) as a shock absorbing packaging material. The water-absorbing ratio and mechanical properties such as tensile strength and compressive strength of pulp mold are important factors to evaluate its shock absorbing characteristics. Influences of mixing ratios of ONP (old newspaper) and OCC (old corrugated container) on physical properties of pulp mold were investigated at various conditions of temperature and relative humidity. The optimum mixing ratio of ONP and OCC was also searched based on physical properties. The results showed that when relative humidity was increased from 60% to 90%, the water absorption ratio of pulp mold increased significantly, tensile strength decreased 20$\sim$30%, and compressive strength decreased 10$\sim$20%. In addition, the optimum mixing ratio of ONP and OCC was found to be 50%:50%.

Experimental Study of Cushioning Pneumatic Cylinder with Meter In/Meter Out Control System (메타인 및 메타아웃 제어에 의한 공기압 실린더의 쿠션특성에 관한 실험적 연구)

  • 김동수;이상천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.97-104
    • /
    • 2000
  • Pneumatic cylinder is widely used for mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under high velocity and load. In this research, the pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system with multiple orifice cushion sleeve which is set vertically controled with meter-in/out system. This study examines the dynamic characteristics of pneumatic cylinder with cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in system.

  • PDF

A Experimental Study to Understand of a Characteristics of a Piezo-Generator using Impact Energy (충격에너지를 활용한 압전 발전기의 특성을 이해하기 위한 실험 연구)

  • Lee, Jaejun;Moon, Hakyong;Kwon, Sooahn;Ryu, Seungki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.689-695
    • /
    • 2011
  • In this paper, available power generation on the road from renewable energy technologies on how to use the piezoelectric effect has been studied. A lot of vehicles on road that can generate electricity using renewable energy technology as part of the external shock to convert the load into electrical energy using piezoelectric effect piezoelectric generator can be applied to road space. Piezoelectric power harvesting using piezoelectric ceramics for the development of impact load characteristics were tested as function of various experimental design such as generator design and array of piezo-ceramic. To design the piezoelectric generator, the characteristics of piezoelectric ceremic were compared depending on the type of impact load as function of impact load, shock-absorbing.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.