• 제목/요약/키워드: Shock Wave Theory

검색결과 56건 처리시간 0.022초

충격파와 난류경계층의 상호작용에 대한 수치해석 (NUMERICAL SIMULATION OF HIGH-SPEED FLOWS WITH SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTIONS)

  • 문수연;손창현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.51-59
    • /
    • 2000
  • The Interactions of shock wave with turbulent boundary layers in high-speed flows cause complex flowfields which result in increased adverse pressure gradients, skin friction and temperature. Accurate and reliable prediction of such phenomena is needed in designing high-speed propulsion systems. Such analyses of the complex flowfields require sophisticated numerical scheme that can resolve interactions between shock wave and boundary layers accurately. Therefore the purpose of the present. article is to introduce an accurate and efficient mixed explicit-implicit generalized Galerkin finite element method. To demonstrate the validity of the theory and numerical procedure, several benchmark cases are investigated.

  • PDF

Design of Smart flap actuators for swept shock wave/turbulent boundary layer interaction control

  • Couldrick, Jonathan;Shankar, Krishnakumar;Gai, Sudhir;Milthorpe, John
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.519-531
    • /
    • 2003
  • Piezoelectric actuators have long been recognised for use in aerospace structures for control of structural shape. This paper looks at active control of the swept shock wave/turbulent boundary layer interaction using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and unimorph tip deflection, hence mass transfer rates. The actuators are modelled using classical composite material mechanics theory, as well as a finite element-modelling program (ANSYS 5.7).

급축소관을 전파하는 압축파에 관한 이론적 연구 (Theoretical study on compression wave propagating in a sudden reduction duct)

  • 김희동;김태호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

The Calculation of Hugoniot Adiabatics and Viscosity of Shock Compressed Water

  • Baik, Dae-Hyun;Jhon, Mu-Shik;Yoon, Byoung-Jip
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권4호
    • /
    • pp.293-296
    • /
    • 1986
  • The Hugoniot adiabatics and viscosity of shock compressed water have been calculated by applying the significant structure theory of water. To consider the effects of pressure and temperature, the sublimation energy has been expressed by the spherically averaged Stillinger-Rahman ST2 potential. Good agreements between theory and experiment are obtained in the whole extreme ranges of shock wave condition up to 100 GPa (lMbar).

수중폭발 충격파와 가스구체 압력파를 함께 고려한 구조물의 동적응답해석 (Integrated Structural Dynamic Response Analysis considering the UNDEX Shock Wave and Gas Bubble Pulse)

  • 이상갑;권정일;정정훈
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.148-153
    • /
    • 2007
  • Two typical impact loadings, shock wave and gas bubble pulse, due to UNDEX(UNDerwater EXplosion), should be considered together for the closest response analysis of structure subjected to UNDEX to a reality. Since these two impact loadings have different response time bands, however, their response characteristics of structure are different from each other. It is impossible to consider these effectively under the current computational environment and the mathematical model has not yet been developed. Whereas Hicks model approximates the fluid-structure interaction due to gas bubble pulse as virtual mass effect, treating the flow by the response of gas bubble after shock wave as incompressible ideal fluid contrary to the compressible flow due to shock wave, Geers-Hunter model could make the closest response analysis of structure under UNDEX to a real one as a mathematical model considering the fluid-structure interaction due to shock wave and gas bubble pulse together using acoustic wave theory and DAA(Doubly Asymptotic Approximation). In this study, the application and effectiveness of integrated dynamic response analysis of submerged structure was examined with the analysis of the shock wave and gas bubble pulse together.

점진적 충격파모형의 함축적 의미와 검산 (Implications and numerical application of the asymptotical shock wave model)

  • 조성길
    • 한국ITS학회 논문지
    • /
    • 제11권4호
    • /
    • pp.51-62
    • /
    • 2012
  • Lighthill과 Whitham의 충격파모형에 따르면 동일한 속도를 유지하는 교통류 흐름상태에서도 충격파가 존재하며, 이는 라디오 전파처럼 보이지도 않고 관측할 수도 없다고 하였다. 최근의 한 논문은 이 문제에 대해 새로운 접근방법을 통해 위와 같은 모순이 어떻게 발생하였는지를 보여주었고, 이를 개선하기 위해 점근적 충격파모형 (asymptotical shock wave model) 을 제시하였다. 점근적 충격파모형은 동일한 속도로 이동하는 균일한 교통류에서 라디오 전파와 같은 관측 불가능한 충격파가 존재하지 않는 것을 증명하였다. 그러나 상기 논문은 모형의 유도와 증명에 치중하였고 모형으로서의 해석이나 구체적인 수치를 적용한 모형의 검증은 아직 실행된 적이 없다. 본 논문은 점근적 충격파모형의 내포된 의미를 해석하고, 구체적인 수치를 바탕으로 한 시나리오를 통해 모형의 성능을 시험하였다. 그 결과 점근적 충격파모형은 기존 모형에 비해 수식상의 큰 차이는 없었지만, 유일한 차이인 등식의 세 번째 항목이 모형 결과에 결정적인 차이를 나타냄을 확인하였다. 새 모형에 도입된 파라메터는 적용된 수치의 대소에 따라 그 결과가 다르게 나타났다. 이는 기존의 충격파모형에는 없는 특징으로서, 적절한 수치를 선정한다면 다양한 교통흐름에 신축적으로 모형을 적용할 수 있을 것으로 판단된다. 또한 구체적인 수치를 적용한 점근적모형의 시나리오별 시험 결과 동일한 조건에서 새로운 모형은 기존 모형에 비해 충격파가 교통류의 하류 측으로 더 진행됨을 확인하였다. 양 모형간의 이러한 차이는 통계적 유의성 검토에서도 확인되었으며, 향후 현장 자료를 적용한 추가적 비교연구가 필요한 것으로 사료된다.

경혈경락이론에 근거한 체외충격파 치료가 무릎 관절염에 미치는 영향: 체계적 문헌 고찰 (Extracorporeal Shock Wave Therapy with Meridian and Acupoint Theory for Knee Osteoarthritis: Systematic Review)

  • 김병준;이상현;김현태;박혜진;박선영;허인;황만석;신병철;황의형
    • 한방재활의학과학회지
    • /
    • 제31권2호
    • /
    • pp.41-48
    • /
    • 2021
  • Objectives To determine the evidence of effectiveness and safety of extracorporeal shock wave therapy (ESWT) with meridian and acupoint theory for knee osteoarthritis. Methods By March 3, 2021, five foreign electronic databases and six Korean medical electronic databases were reviewed with the key words 'extracorporeal shock wave' and '(acupoint OR acupuncture point)'. This key words was set up to increase the sensitivity of the search. After the search, knee osteoarthritis study was selected based on the title and abstract and then included after full-texts were read. Results Five randomized controlled trials were eligible in our inclusion criteria. The meta-analysis of three studies showed positive results for the using ESWT with meridian and acupoint theory for knee osteoarthritis compared with the control group on efficancy rate, visual analog scale and lysholm knee score. but there remains a conundrum regarding the safety of ESWT in the treatment of knee osteoarthritis. Conclusions Most of studies showed ESWT with meridian and acupoint theory were statistically effective to knee osteoarthritis. However there are limitations that the number of selected studies was small, risk of bias was unclear. So use of ESWT with meridian and acupoint theory for knee arthritis has limited evidence compared to usual care.

경혈경락 이론에 근거한 체외충격파 치료가 유착성 관절낭염에 미치는 영향: 무작위 대조 임상연구에 대한 체계적 문헌고찰과 메타분석 (Extracorporeal Shock Wave Therapy with Meridian and Acupoint Theory for Adhesive Capsulitis: A Systematic Review and Meta-analysis of Randomized Controlled Trials)

  • 한동훈;박인화;허인
    • 한방재활의학과학회지
    • /
    • 제32권2호
    • /
    • pp.55-63
    • /
    • 2022
  • Objectives This review was conducted to evaluate effectiveness and safety of extracorporeal shock wave therapy (ESWT) with meridian and acupoint theory for adhesive capsulitis. Methods By December 2021, 11 electronic databases were reviewed with the key words 'extracorporeal shock wave' and '(acupuncture OR acupoint OR meridian)'. This key words was set up to increase the sensitivity of the search. After the search, adhesive capsulitis study was selected based on the title and abstract and then included after full-texts were read. Results Five randomized controlled trials were eligible in our inclusion criteria. The meta-analysis of 3 studies showed positive results for the using ESWT with meridian and acupoint theory for adhesive capsulitis compared with the control group on efficancy rate and range of shoulder flexion. Conclusions Some studies showed ESWT with meridian and acupoint theory were statistically effective to adhesive capsulitis. But the evidence is limited due to the defective design of the included randomized controlled trials (RCTs). So use of ESWT with meridian and acupoint theory for adhesive capsulitis has limited evidence. More well-designed RCTs are required to provide clearer evidence for this claim.

쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석 (Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies)

  • Jeong-Yeol Choi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Asymptotical Shock Wave Model for Acceleration Flow

  • 조성길
    • 한국ITS학회 논문지
    • /
    • 제12권3호
    • /
    • pp.103-113
    • /
    • 2013
  • 충격파모형은 교통류에서 운동학적 파동이 전파되는 속도이며, Lighthill과 Whitham(L-W)에 의해 처음 제시되 이래 지금까지 많은 교통류 문제에 적용되어지고 있다. 최근의 한 논문은 실재상황에서 발생되지 않는 충격파가 L-W모형에서 예측되는 모순을 지적하였고, 이러한 모순이 발생되는 원인과 이를 해소하는 새로운 점진적충격파모형을 제시한 바 있다. 그러나 이 모형은 교통류 흐름 중 감속하는 교통류에 대해 한정하여 유도 되었으며 반대상황 즉 가속하는 교통류에 대한 모형은 아직 제시되지 못하고 있다. 본 연구에서는 가속 교통류에 대한 점진적 충격파모형을 유도하고 이를 검증하고자 한다. 이를 위해 가속상태의 교통류에서 추종차량의 가속에 따른 차량간의 간격이 Greenshield의 모형을 충실히 따르도록 한정하고 이를 바탕으로 충격파모형을 유도하였다. 그 결과 본 연구에서 제시된 모형은 L-W모형의 모순이 해소됨을 확인하였고, 사례교통량을 적용해 기존모형들과의 결과 차이를 정량적으로 확인하였다. 한편 모형간의 차이가 분명하고도 구조적인 것을 확인하였고 이에 대한 추가적인 향후 연구의 필요성을 제시하였다.