• Title/Summary/Keyword: Shock Process

Search Result 574, Processing Time 0.025 seconds

Development of Shock Testing M/C to Simulate Pyro-technic Device Explosion of Space vehicle (우주비행체 분리장치 작동에 의한 충격현상 모의 시험기 개발)

  • Kim, Hong-Bae;Oh, Jin-Ho;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.581-586
    • /
    • 2000
  • Explosively activated pyro-technic device is used to release exhausted rocket booster or payloads at prescribed times in the rocket's flight. It creates pyro-shock environment that rocket or payload components must survive. With the shock spectra acquired from flight data, laboratory test should be performed before flight to check whether all of component can sustain the shock environment. The pyro-shock environment simulation was created by the resonance fixture response to a projectile impact. Desired shock spectra is realized by adjusting the natural frequency of resonance plate and the velocity of impact hammer. This paper describes the development process of Pyro-shock testing machine, which is designed and tested by Korean engineers, to verify components of Korean Sounding Rocket(KSR-3) and the other Korean space vehicle. Both analytical and experimental techniques are introduced in this paper.

  • PDF

Observation of the Rebound Shock Waves and the EUV Brightening of a Light Bridge Jet

  • Yang, Heesu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2020
  • Hα jets of cool chromospheric plasma are protruding into the solar corona 10-100 Mm above the photosphere. The driving mechanisms of Hα jets have been widely studied for decades. However, the detailed process is still elusive. We observed shock signatures moving along a dark jet using 1.6 meter Goode Solar Telescope at Big Bear Solar Observatory. The first shock front of the jet shows sharp --- when it moves upward, while fuzzy and granulated when it moves downward. The jet itself extends upward when the second shock front of the jet reaches the top of the jet. We find abrupt EUV brightenings when the second shock front collides with the edge of the jet. The third front and the fouth front quasi-periodically. These phenomena might be the signs of the rebound shock waves triggered by p-mode wave leakages at the bottom of the jets. Our observation suggests that the jet can be triggered by the rebound shock waves generated by the p-mode waves leaked at the bottom of the jets.

  • PDF

A Basic Study on the Alternative Development of Piston for Shock Absorber (충격 흡수기 피스톤의 대체 개발에 관한 기초적 연구)

  • 김영호;배원명;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.121-124
    • /
    • 1995
  • This study is aimed at cutting down the cost, weight and improving process by replacing the traditional sintered piston of the shock absorber with engineering plastic piston by means of injection molding. To obtain the high mechanical properties, glass fiber material was selected adequately and forming analysis considering fiber orientation was made to remove the forming deficit fators and to construct the optimal runner system. In addition, structural analysis using commercial software MOLDFLOW was performed under near conditions in actual driving of automotive. The results from the internal pressure process test, oilproof test based on forming, structural and strength analysis shows that hydraulic close performance and damping force considering the out of roundness of shock absorber are relatively good.

  • PDF

Cosmological shocks and the cosmic gamma-ray background

  • Ma, Renyi;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2010
  • During the formation of cosmic web, collisionless shock waves are produced around and inside the substructures. In these shock waves electrons and ions are accelerated to such high energies that they can produce gamma rays in several ways. Many authors have studied the contribution of shock-induced radiation to the cosmic gamma-ray background. However not all the important physical processes are included in their calculation. By considering more complete physical process, we re-investigate the problem. In our model, the energy distribution of the cosmic rays (CRs) are calculated by widely accepted diffusive shock acceleration model, both primary and secondary CR electrons are included, both inverse Compton scattering and bremsstrahlung process are considered. The difference of the results are discussed.

  • PDF

An experimental study on the ignition of dusts behind reflected shock waves (고체미립자의 반사압축파에 의한 점화에 관한 실험적 연구)

  • 백승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.118-123
    • /
    • 1987
  • In relation to the dust detonatians which have imposed severe damages on the industry, the ignitability of various dusts has been investigated on a horizontal shock tube in this study. By using a newly designed air injector, very well-distributed clouds could be obtained. The proper reflected shock conditions have been generated by placing a reflector 1.5cm behind the air injector, which reflected the incident shock wave. The incident shock waves in the range of Mach number 2.8-3.3 created the postreflected shock temperature of 1200-1600K. Experimentally the ignition delay was defined as the time interval between the arrival of a reflected shock wave at dusts and the detection of visible light. Measured ignition delays of dusts investigated were located lower than 1msec under the above conditions. These values are one-order higher than those in the incident shock wave condition. In this type of ignitiion process the following three processes are considered to play important roles; heating of a particle, generation of volatile gas by endothermic devolatilization process, and its diffusion from the particle surface and the formation of stoichiometric mixture with oxidizer.

Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process (충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가)

  • Kim, W.;Ahn, D.H.;Park, L.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

Thermal Shock and Hot Corrosion Resistance of Si3N4 Fabricated by Nitrided Pressureless Sintering (질화상압(NPS)법으로 제조한 질화규소의 열충격 저항성 및 내부식성 특성평가)

  • Kwak, Kil-Ho;Kim, Chul;Han, In-Sub;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.478-483
    • /
    • 2009
  • Thermal shock and hot corrosion resistance of silicon nitride ceramics are investigated in this study. Silicon nitrides are fabricated by nitride pressureless sintering (NPS) process, which process is the continuous process of nitridation reaction of Si metal combined with subsequent pressureless sintering. The results of thermal shock test show it sustains 400MPa of initial strength during test in the designated condition of ${\Delta}T=700{\sim}25^{\circ}C$ up to maximum 4,800 cycles. Hot corrosion tests also reveal that the strength degradation of NPS silicon nitride did not occur at $700^{\circ}C$ with an exposure in Ar, $H_2$, Na and K for 1,275 h.

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

A Computational Study of the Focusing Phenomenon of Weak Shock Wave (약한 충격파의 포커싱 현상에 관한 수치해석적 연구)

  • Kweon Yong Hun;Kim Heuy Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

DDAM Shock Analysis for Equipment Systems of Ships (함정 장비시스템의 내충격해석을 위한 동적설계해석법 (DDAM) 응용)

  • Lee, J.M.;Lee, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1180-1184
    • /
    • 2000
  • The dynamic design analysis method (DDAM) to analyze and evaluate shock response of the equipment system mounted in ships are discussed. Theoretical background of the DDAM based on the general shock response analysis was introduced. Spectrum dip effect between the equipment system and supporting structure was specially focused being peculiar to general shock response analysis. Actual shock design values used in the DDAM were reviewed in their category, general trend and establishing process. Aspects of DDAM analysis using MSC/NASTRAN were shortened. As a conclusion DDAM is regarded as a reasonable way of analysis for the onboard equipment system due to the underwater shock.

  • PDF