• Title/Summary/Keyword: Shock Mach Number

Search Result 236, Processing Time 0.022 seconds

Study of Screened Supersonic Jet Flow Fields (스크린 설치에 따른 초음속 제트유동 변화에 관한 연구)

  • Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.92-98
    • /
    • 2005
  • Screen can provide any disturbed resistance that affects the change in characteristics of turbulence, velocity and pressure distributions of the flow field, and thus it has been widely used to control the flow. Some previous related studies for compressible flows have limitations such as, considering relatively low-Mach-number flows in the range of 0.3 ∼ 0.7, and not observing the detailed shock structures of the flow fields. An experimental study on highly compressible axi-symmetric supersonic jet flow fields behind wire-gauze screen has thus been carried out. Continuous/instantaneous flow images by Schlieren flow- visualization technique and the information of Pitot pressure/flow-noise measurements of the flow field behind the screen for various jet expansion conditions have been obtained. Effects of various porosity and inclination angles of the screen at the nozzle exit have also been investigated, and the experimental results have been compared to the case with no screen installed.

Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique (PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정)

  • Lee, Hyuk;Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Velocity profiles of laminar, transition and turbulent boundary layers were investigated by using Particle Image Velocimetry(PIV) measurements on the flat plate at Mach 2.96. The Schlieren visualization and PIV measurements are also used to confirm whether the oblique shock wave generated from the leading edge affects the flow field over the flat plate. The laminar velocity profile measured from the experiment was well matched with the compressible Blasius solution. The velocity profile of the transition boundary layer was well correlated with the theoretical turbulent velocity profile from near the wall and the transition began from Re = $1.41{\times}106$. For the turbulent boundary layer, considering compressibility effects, the Van Driest-transformed velocity satisfies the incompressible log-law. It is found that the log region is extended farther in the wall-normal direction compared to the log region in incompressible boundary layer.

Experimental Study of the Multi-Row Disk Inlet

  • Maru, Yusuke;Kobayashi, Hiroaki;Kojima, Takoyuki;Sato, Tetsuya;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.634-643
    • /
    • 2004
  • In this paper are presented a concept of a new supersonic air inlet, which is designated a Multi-Row Disk (MRD) inlet, aiming at performance improvement under off-design conditions, and results of wind tunnel tests examined performance characteristics of the MRD inlet. The MRD inlet is frequently called ‘a skeleton inlet’ because of its appearance. The performance of a conventional axisymmetric inlet with a solid center body (spike) deteriorates under off-design Mach number conditions. It is due to the fact that total pressure recovery (TPR) governed by the throat area of inlet and mass capture ratio (MCR) governed by an incidence position of an oblique shock from the spike tip into the cowl can not be controlled independently in such air inlet. The MRD inlet has the spike that is composed of a tip cone and several disks arranged downstream of it, based on the experimental fact that several deep cavities on a conical surface have little negative effect on the boundary layer growth. The overall spike length of the MRD inlet is adjustable to the given flight speed by changing space between disks so that a spillage flow can be controlled independently from controlling the throat area. It could be made clear from the result of wind tunnel tests that the MRD inlet improves TPR by 10% compared with a conventional inlet with a solid spike under off-design conditions.

  • PDF

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW (0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험)

  • Kim, Min-Ho;Lee, Mi-Yeon;Kim, Jeong-Soo;Choi, Chea-Hong;Seo, Jun-Ho;Moon, Se-Yeon;Hong, Bong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.700-707
    • /
    • 2013
  • Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.