• Title/Summary/Keyword: Shock Interaction

Search Result 370, Processing Time 0.022 seconds

Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System (초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Kim, Seong-Jin;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • Unsteady numerical analysis of an entire supersonic propulsion system from intake to nozzle was performed to study dynamic interaction between terminal shock in the intake and flame in the combustor. Both acceleration and cruise flight-modes were considered. Acoustic mode of the entire engine for both flight-modes were investigated by detail analysis of pressure fluctuation at each location of engine.

  • PDF

Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

  • Kim, Eo-Jin;Sohn, Jong-Dae;Yi, Yu;Ogino, Tatsuki;Lee, Joo-Hee;Park, Jae-Woo;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.

An Experimental Study of Shock Wave Effects on the Model Scramjet Combustor (모델 스크램제트 연소기에서 충격파 영향에 대한 실험적 연구)

  • 허환일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • An experimental study was carried out in order to investigate the effect of shock waves on the supersonic hydrogen-air jet flames stabilized in the Mach 2.5 model scramjet combustor. This experiment was the first reacting flow experiment interacting with shock waves. Two identical $10^{\cire}$ wedges were mounted on the diverging sidewalls of the combustor in order to produce oblique shock waves that interacted with the flame. Schlieren visualization pictures, wall static pressures, and combustion efficiency at two different air stagnation temperatures were measured and compared to corresponding flames without shock wave-flame interaction. It was observed that shock waves significantly altered the shape of supersonic jet flames, but had different effects on combustion efficiency depending on air temperatures. At the higher air stagnation temperature and higher fuel flow rates, combustion of efficiency showed a better result.

  • PDF

Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall (강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구)

  • LEE Doug-Bong;SHIN Joon-Cheol
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE (안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석)

  • Ji Y.M.;Lee J.W.;Park J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.

Transient interactions between submerged elastic shells and acoustic shock waves from a moving source (움직이는 소스와 구형쉘의 상호작용 해석)

  • 이민형;이범헌;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.85-89
    • /
    • 2001
  • The problem of the transient interaction of a plane acoustic shock wave which has an infinitely steep wave front with a cylindrical or spherical elastic shell has been studied analytically from early fifties based on the integral transform and series solution techniques. Huang adopted an inverse Laplace transform, and used a finite number of terms of the infinite series expansion of the equations for the shells. In the 1990s, the results have been used by many authors for validation of computer codes. The object of this paper is to discuss the interaction between a moving source and submerged spherical shells. Since the center of source is moving the first contact location between the waves and shell changes depending on the source velocity and distance. These are considered in the analysis. Furthermore, constant source strength and decreasing strength are considered in the analysis. Radial velocities at several locations on the structure are obtained and the results are discussed.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.