• Title/Summary/Keyword: Shock Interaction

Search Result 369, Processing Time 0.027 seconds

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -II : Consideration of Effects on Impact Response Behaviors- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -II : 내충격 응답거동에 미치는 영향 고찰-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.735-749
    • /
    • 2008
  • For the development of the original technique of structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In the previous study, the wet drop impact response analyses of CCS structure in membrane Mark III type LNG carriers were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. In this study, the characteristics of structural shock response behaviors of CCS structure were sufficiently figured out by careful examinations of the effects of specimen weight, drop height, incident angle, corrugation and stiffness of inner hull on its shock response behaviors. The shock response analysis of upward shooting fluid to inner hull was performed, and the reason of faster strain response than shock pressure one was also figured out.

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

CFD CONFIRMATION OF ABNORMAL SHOCK WAVE INTERACTIONS (전산해석을 통한 비정상 Mach Reflection Wave Configuration 확인)

  • Hu, Z.M;Yang, Y.R.;Zhang, Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.92-96
    • /
    • 2008
  • For the Mach reflection of symmetric shock waves, only the wave configuration of an oMR(DiMR+DiMR) is theoretically admissible. For asymmetric shock waves, an oMR(DiMR+InMR) will be possible if the two slip layers assemble a convergent-divergent stream tube while an oMR(InMR+InMR) is absolutely impossible. In this paper, an overall Mach reflection configuration with double inverse MR patterns is confirmed using the CFD technique. Classical two- and three-shock theories are also applied for the theoretical analysis. In addition, oscillations of shock wave patterns are computed for the interaction of a hypersonic flow and double-wedge-like geometries.

  • PDF

CFD CONFIRMATION OF ABNORMAL SHOCK WAVE INTERACTIONS (전산해석을 통한 비정상 Mach Reflection Wave Configuration 확인)

  • Hu, Z.M.;Yang, Y.R.;Zhang, Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.92-96
    • /
    • 2008
  • For the Mach reflection of symmetric shock waves, only the wave configuration of an oMR(DiMR+DiMR) is theoretically admissible. For asymmetric shock waves, an oMR(DiMR+InMR) will be possible if the two slip layers assemble a convergent-divergent stream tube while an oMR(InMR+InMR) is absolutely impossible. In this paper, an overall Mach reflection configuration with double inverse MR patterns is confirmed using the CFD technique. Classical two- and three-shock theories are also applied for the theoretical analysis. In addition, oscillations of shock wave patterns are computed for the interaction of a hypersonic flow and double-wedge-like geometries.

  • PDF

Numerical Simulation of Pseudo-Shock Waves with Different Confinement Parameters (서로 다른 Confinement parameter를 가지는 의사충격파의 전산유동해석)

  • Kang, Kyungrae;Choi, Jong Ho;Song, Seung Jin;Do, Hyungrok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.336-340
    • /
    • 2017
  • When supersonic flow is through an internal duct, there forms a flow structure called pseudo-shock. Pseudo-shock is a result of shockwave-boundary layer interaction(SBLI) and to simulate pseudo-shock correctly, one needs to correctly anticipate not only the strength of the shock but also the boundary layer behavior as well. In this study, pseud-shockwave structure at a rectangular duct will be numerically simulated using dedicated inlet boundary conditions to obtain accurate solution in terms of its structure and pressure rise pattern.

  • PDF

Measured Effect of Shock Wave on the Stability Limits of Supersonic Hydrogen-Air Flames (충격파가 초음속 수소-공기 화염의 안정한계에 미치는 영향)

  • Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 1999
  • Measured shock wave effects were investigated by changing shock strength and position with particular emphasis on the stability limits of hydrogen-air jet flames. For this purpose, a supersonic nonpremixed, jet-like flame was stabilized along the axis of a Mach 2.5 wind tunnel, and wedges were mounted on the sidewall in order to interact oblique shock waves with the flame. This experiment was the first reacting flow experiment interacting with shock waves. Schilieren visualization pictures, wall static pressures, and flame stability limits were measured and compared to corresponding flames without shock-flame interaction. Substantial improvements in the flame stability limits were achieved by properly interacting the shock waves with the flameholding recirculation zone. The reason for the significant improvement in flame stability limits is believed to be the adverse pressure gradient caused by the shock, which can elongate the recirculation zone.

  • PDF

Study on Multiple Shock Wave Structures in Supersonic Internal Flow (초음속 내부유동에서 다수의 충격파 구조에 대한 연구)

  • James, Jintu K;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.31-40
    • /
    • 2020
  • The structure and dynamics of multiple shock waves are studied numerically using a finite volume solver for a model with nozzle exit Mach number of 1.75. At first, the shock variation based on images were analyzed using a Matlab program then later to the wall static pressure variation. The amplitude and frequency variation for multiple shock waves are analyzed. The cross-correlation between the shock location suggests that the first and the second shocks are well correlated while the other shocks show a phase lag in the oscillation characteristics. The rms values of pressure fluctuations are maximum at the shock locations while the other parts in the flow exhibit a lower value os standard deviation.