• Title/Summary/Keyword: Shipping Logistics Infrastructure

Search Result 22, Processing Time 0.016 seconds

A Study on Decision-Making Model for Port Selection : Container Terminal's Perspectives (터미널 운영사 측면에서의 컨테이너 터미널 자동화 결정모형 연구)

  • You, Ji-Won;Kim, Yul-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.138-139
    • /
    • 2019
  • In the era of the 4th industrial revolution, automated technology innovation is emerging, and container terminals are being developed to introduce automation equipment and systems. With the advent of ultra-large vessels, terminals around the world are seeking to build port infrastructure by combining automated technology in order to attract more cargo and to enhance competitiveness to provide prompt service. To introduce automated technology that is emerging as a high-tech industry, this study proposes a structural equation model for the decision to introduce automated container terminal and conducts a questionnaire survey on workers engaged in terminal operators for empirical analysis. This paper presents the role and direction of guidelines for introduction of automated container terminal through decision model.

  • PDF

A Study on Container Monitoring Loaded into the Hold in Maritime Logistics (해상운송 환경에서 IP-RFID 기술을 이용한 선박 홀드에 적재된 컨테이너 상태 모니터링에 관한 연구)

  • Kim, Tae-Hoon;Choi, Sung-Pill;Moon, Young-Sik;Lee, Byung-Ha;Jung, Jun-Woo;Park, Byung-Kwon;Kim, Jae-Joong;Choi, Hyung-Rim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1446-1455
    • /
    • 2016
  • The recent increase of fresh farm products, hazardous cargos, and high-priced goods in marine transportation has caused an increased demand of cargo owners and shipping companies with regard to the monitoring of the location and state of cargo. To meet this increase, numerous technologies are being studied for the monitoring of the cargo state. Cargo containers on a ship are loaded on a ship's deck and in a ship's hold, which is located under the deck. However, Since the developed technologies mostly transfer the container status information that collected by mobile communication, it costs a lot to install communication infrastructure on ship. And the ship's hold is completely sealed with a cover, and communication with the reader positioned at the ship's bridge is difficult. Therefore, most existing studies on container monitoring on ships have focused on the monitoring of containers loaded on a ship's deck. Accordingly, this study suggested system configuration for the monitoring of containers in a ship's hold using IP-RFID technology. The suggested system configuration was tested on an actual ship under navigation, and the test results are given in this study. The test results verified that the monitoring of containers in a ship's hold using IP-RFID technology is effective.