• Title/Summary/Keyword: Shipbuilding simulation

Search Result 242, Processing Time 0.022 seconds

Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.83-101
    • /
    • 2016
  • This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS) formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

Lug Arrangement and Dynamic Analysis of Lifting Simulation for Underwater Installation of Structure in Asymmetric Position (비대칭 위치의 수중 구조물 설치를 위한 러그 위치 산정 및 리프팅 동역학 해석)

  • Jo, A-Ra;Park, Kwang-Phil;Lee, Hyun-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.283-289
    • /
    • 2015
  • RGT(Riser Guide Tube) is a part of mooring on the bottom of a turret system to be connected with a production riser, and DBSC(Diverless Bend Stiffener Connector) is a latching component between them. In this paper, appropriate lug arrangement is decided mathematically for the case that a DBSC is lifted and installed on a RGT under the water while FPSO is under construction. Considering asymmetric arrangement & position of RGT and initial lug position, additional lug positions are determined by using an optimization method. The modified installation scheme with new lug points is investigated with a lifting simulation system, SIMSON. The simulation result shows that the installation of DBSC on RGT under the given conditions is quite feasible; therefore the mathematical method is proven to be appropriate.

A Study for Prevention of Musculoskeletal Disorders Using Digital Human Simulation in the Shipbuilding Industry (Digital Human Simulation을 이용한 근골격계질환 예방에 관한 연구 -조선업을 대상으로-)

  • Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.81-87
    • /
    • 2007
  • In this study digital human models of ship construction tasks using modeling & simulation were constructed and human models' activities through human activity analysis were evaluated. Human Factors experts analyzed the actual workers' tasks using the same technique used in human activity analysis at the same time. The main objective of this study is to check a possibility of applying digital human modeling technique to ship construction tasks that are mostly non-standardized(not uniformed) whereas most applications of digital human modeling technique have been applied to standardized tasks. We evaluated postures of both real workers and digital humans by RULA. It turned out that the final scores of RULA evaluation on real workers are the same as the RULA scores for digital humans. However, there were differences of RULA detail scores between real workers and digital humans in the several processes related with the wrist twist and deviations. Those differences are considered to be resulted from the error in the on-site measuring worker's body dimension which could be reduced by accurate tools to correct data for body dimension and digital real drawings for facilities. The results showed possibility of application of digital human modeling and ergonomic analysis on informal work operations as well as formal operations in the shipbuilding industry.

Simulation of Subassembly Production at Shipyards

  • Hertel, Erik;Nienhuis, Ubald;Steinhauer, Dirk
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • To survive in the current shipbuilding industry it is of vital importance for shipyards to achieve an optimal utilization of resources, make an achievable planning and ensure that this planning is kept. Possible problems should be eliminated before production starts and if unexpected disturbances occur in the actual production the right measures should be taken. Due to the dynamic nature of the production process, the continuous variation in products and the complexity of both, all this can hardly be achieved with conventional static planning and analysis systems. Simulation provides a solution here, since this enables the modelling and evaluation of the dynamic relations between product and production process. After a global introduction to production simulation in general and the application of simulation at the Flensburger shipyard, this paper presents a tool that has been developed to simulate the various complex assembly processes taking place at shipyards. Subsequently the simulation model for the subassembly production at Flensburger, in which this tool is applied, will be discussed.

A Study on the Characteristic of Motion and Resistance Performance from the Body Plan of Planning Leisure boat at low speed (저속시 활주형 레저보트의 단면형상에 따른 저항·내항성능 특성연구)

  • Park, C.H.;An, N.H.;Jang, H.Y.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • In this study, the numerical simulation and basin model test have been performed to evaluate sea worthiness and resistance performance for a small pre-planning three type of leisure boats which are U, V, Y shapes of hull forms. As a well known commercial CFD code, Maxsurf, was applied for modeling hull forms used as the solver of motion analysis. Also the model resistance test was carried out to estimate the effective power of boat in the basin tank. Numerical simulation and model test results show that Y-shaped hull is better than the other types in terms of heave and pitch motion, having a key effect on a boat sea worthiness. But V-type hull is more efficiency than others cases in resistance performance.

Research on systematization and advancement of shipbuilding production management for flexible and agile response for high value offshore platform

  • Song, Young-Joo;Woo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-192
    • /
    • 2011
  • Recently, the speed of change related with enterprise management is getting faster than ever owing to the competition among companies, technique diffusion, shortening of product lifecycle, excessive supply of market. For the example, the compliance condition (such as delivery date, product quality, etc.) from the ship owner is getting complicated and the needs for the new product such as FPSO, FSRU are coming to fore. This paradigm shift emphasize the rapid response rather than the competitive price, flexibility and agility rather than effective and optimal perspective for the domestic shipbuilding company. So, domestic shipbuilding companies have to secure agile and flexible ship production environment that could respond change of market and requirements of customers in order to continue a competitive edge in the world market. In this paper, I'm going to define a standard shipbuilding production management system by investigating the environment of domestic major shipbuilding companies. Also, I'm going to propose a unified ship production management and system for the operation of unified management through detail analysis of the activities and the data flow of ship production management. And, the system functions for the strategic approach of ship production management are investigated through the business administration tools such as performance pyramid, VDT and BSC. Lastly, the research of applying strategic KPI to the digital shipyard as virtual execution platform is conducted.

The Simulation System for Scheduling Validation of the Panel Block Shop (판넬 블록공정 모델에 대한 일정검증 시뮬레이션 시스템)

  • Lee, Phi-Lippe;Oh, Dae-Kyun;Lee, Kwang-Kook;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.641-649
    • /
    • 2009
  • There were many simulation models that made for validation of industrial environment and estimate of efficiency to be constructed. And there will be more simulation models made for same reason, too. Already, there have been a lot of simulation models in industry field and scholar labs. To reuse these simulation models, it is necessary to find common properties and make the high abstract simulation model. Based on this idea, this study shows to define the high abstract simulation model to be able to specialize in need and to make the software framework for connecting the specific simulation model to the abstract model. And it is held up as the example that applying the simulation framework to the Ship Panel Block shop simulation model.

Development of Hull Form Optimization Method for Improving Resistance Performance of Small Catamaran (소형 쌍동선의 저항성능 개선을 위한 선형 최적화 기법 개발)

  • Jung Yoon Park; Jonghyeon Lee;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.332-340
    • /
    • 2023
  • The present study established hull form optimization for small catamaran based on variations of knuckle lines. Four knuckle lines below the free surface were employed as design variables. Knuckle lines were independently transformed within remaining the main dimensions of the existing hull. For the hull form optimization, the SHERPA algorithm of HEEDS was utilized. Computational fluid dynamics was employed to estimate the resistance performance. The optimal hull showed the improvement of resistance performance of 9.3% than that of existing hull. The improvement of wave and pressure distributions for optimal hull was confirmed. Throughout the present study, it is expected that established optimization method can be applied for various small vessels such as fishing and leisure boats.

System development for establishing shipyard mid-term production plans using backward process-centric simulation

  • Ju, Suheon;Sung, Saenal;Shen, Huiqiang;Jeong, Yong-Kuk;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-37
    • /
    • 2020
  • In this paper, we propose a simulation method based on backward simulation and process-oriented simulation to take into account the characteristics of shipbuilding production, which is an order-based industry with a job shop production environment. The shipyard production planning process was investigated to analyze the detailed process, variables and constraints of mid-term production planning. Backward and process-centric simulation methods were applied to the mid-term production planning process and an improved planning process, which considers the shipbuilding characteristics, was proposed. Based on the problem defined by applying backward process-centric simulation, a system which can conduct Discrete Event Simulation (DES) was developed. The developed mid-term planning system can be linked with the existing shipyard Advanced Planning System (APS). Verification of the system was performed with the actual shipyard mid-term production data for the four ships corresponding to a one-year period.

Constructions and Applications of Digital Virtual Factory for Section-steel Shop in Shipbuilding Company (조선 형강 디지털 가상공장 구축 및 활용)

  • Han, Sang-Dong;Shin, Jong-Gye;Kim, Yu-Suk;Yoon, Tae-Hyuk;Kim, Gun-Yeon;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology facilitating effective product developments and agile productions via digital models representing the physical and logical schema and the behavior of real manufacturing systems. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we construct a sophisticated digital virtual factory for the section steel shop in a Korean shipbuilding company by 3-D CAD and virtual manufacturing simulation. The NIST-AMRF CIM hierarchical model and workflow analysis using IDEF methodology are also applied. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory, and improvements in quality of engineering and savings in time from design to production in shipbuilding are possible.