• Title/Summary/Keyword: Shipbuilding simulation

Search Result 242, Processing Time 0.021 seconds

Numerical and Experimental Study on Plate Forming Process using Flexible Die (가변금형을 이용한 판재 성형에 대한 해석 및 실험)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.570-578
    • /
    • 2008
  • A flexible forming apparatus is composed a number of punches which have spherical pin tip shape instead of conventional solid die. The flexible forming tool consisted of punch array in a matrix form was proposed as an alternative forming method to substitute the conventional line heating method which use heat source to induce residual stress along specified heating lines. In this study, application of the flexible forming process to the small scale curved plate forming was conducted. Numerical simulations for both solid and flexible die forming process were carried out to compare the shape of the products between flexible and conventional die forming process. In addition, spring-back analysis was conducted to figure out the feasibility of the flexible forming process comparing with the die forming process in view of final configuration of the specimens. Moreover, experiment was also carried out to confirm the formability of the process. Consequently, it was confirmed that the flexible die forming method has capability and feasibility to manufacture the curved plates for shipbuilding.

Different Approaches for Estimating the Full-scale Performance of a Ship based on 3-DOF Maneuvering Equations of Motion: Given Speed, RPM or Power (3자유도 조종운동방정식을 이용한 실선성능 추정 방법에 관한 연구: 속도, 분당회전수, 또는 엔진동력을 기준으로)

  • You, Youngjun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.427-438
    • /
    • 2019
  • It was important to estimate the full-scale operating performance including actual RPM and engine power of a ship since the operation efficiency during a voyage could be evaluated from the values. In the previous research, an entire voyage was simulated by following recorded speeds obtained from AIS and full-scale measurement data. Although reasonable tendencies were observed in the estimated speed, actual RPM, and engine power, it was impossible for them to be completely corresponded with the measured values due to the difference between actual operation and mathematical model. In this paper, alternative approaches to cope with the speed, actual RPM, and engine power were suggested by following the given speed, RPM, and power respectively. After entire voyages were simulated according to a given value, the effects of the value on the estimated performance were investigated. And, it was confirmed that the appropriate approach could be differently chosen according to the aim of the simulation or given value.

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

Implementation of welding material quantity evaluation system combined with ship design CAD system

  • Ruy, Won Sun;Kim, Ho Kyeong;Cho, Yong Jin;Ko, Dae Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.219-226
    • /
    • 2017
  • These days, the great part of design processes in the field of ship or offshore manufacturing are planned and implemented using the CAD system customized for shipbuilding companies. It means that all information for design and production could be extracted and reused at the other useful fields which need cost considerable time and efforts. The typical example is the field of welding material quantity evaluation which is demanded during the construction of ship or offshore structures. The proper evaluation of welding material to be used and the usage of them at the stage of schedule planning are mostly important to achieve the seamless process of production and costing in advance. This study is related to the calculation of welding length and needed welding material quantity at the stage of design completion utilizing the customized CAD system. The calculated welding material quantity would be classified according to welding posture, assembly stage, block, bevel and welding type so as to improve the accuracy of total cost evaluation. Moreover it is possible to predict the working time for welding operation and could be used efficiently for the cost management using the results of this research.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

Study on Multi-point Dieless Forming Technology Based on Numerical and Experimental Approach (수치 및 실험적 접근을 통한 다점무금형성형기술 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.220-223
    • /
    • 2008
  • Large curved plate blocks are widely used to construct hull structure in shipbuilding industry. Most curved plates are manufactured by using manual method called as line heating that use deformation caused by residual stress after local heating along a line which is perpendicular to the curvature direction. However, its working environment is poor and its formability is totally dependent on an experienced technician. In view of that, multi-point dieless forming (MDF) technology that use reconfigurable punch arrays instead of one piece die is proposed in this study. The MDF process is based on a concept of equivalent die surface made by numbers of punches which has round tip at the end of it. In this study, numerical simulation for common curvature type such as saddle shape was carried out. In addition, experiments in the plate forming process were also conducted to compare with the numerical results in view of final configuration. Consequently, it was noted that the proposed dieless forming method has considerable feasibility to substitute the new process for conventional manual method.

  • PDF

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

A Study on Noise Reduction in Many-to-Many Communication Applying to Smart Helmets in the Shipyard (조선소 내 스마트 안전모에 적용한 다대다 통신 소음 저감에 관한 연구)

  • Junhyeok Park;Jun Soo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • This paper implements many-to-many communication between users and develops a multi-functional smart helmet for worker protection and environmental safety in the shipbuilding and shipping industry. First, the communication situation is recorded in the field to perform signal processing for noise that interferes with communication. Then, it deals with the contents of developing smart helmets, data acquisition, algorithms, and simulations. The simulation results analyzed by applying the adaptive algorithm are shown, and their usefulness is confirmed. In conclusion, looking at the optimization process for the convergence factor of the Least Mean Square and Filtered-x Least Mean Square Adaptation Algorithm was possible. It is thought that it has laid the foundation for implementing many-to-many communication, the function of smart helmets that reduces or removes various noises at the shipyard in the future.

Risk Assessment of Strong Wind over Industrial Facilities in Shipyards (조선소 시설물의 강풍 위험 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Lee, Young-Kyu;Shim, Kyu-Cheoul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • Most of domestic shipyards are located at coastal regions which are affected by typhoons nearly every year. For effectiveness of shipbuilding, shipyards contain many facilities which are light-weighted and affected dominantly by wind. In the present paper, we analyze various wind fields over a shipyard including surrounding topology and structures to evaluate the structural safety of the facilities posed in the strong wind. Extreme wind speed for a study region was estimated by typhoon Monte Carlo simulation and then used for inlet wind speed for CFD analysis for wind load on the facilities. Considering geometrical wind effects, we assess the surface pressure of the elements as the pressure factor, the ratio of surface pressure to dynamic pressure. The results show that the simulated wind speed is greater than the design wind speed for the some facilities because of the shipyard's geometry. It also shows that surrounding topography in coastal area is needed to be considered and adjustment for design wind speed at wind load standard application is necessary for mooring ship and industry facilities.