• Title/Summary/Keyword: Shipbuilding and Marine Industry

Search Result 153, Processing Time 0.028 seconds

The Designing of Production Planning Module for Advanced Planning System with Respect to Supply Chain of the Shipbuilding Industry (조선산업의 공급망을 고려한 APS 생산계획 모듈 설계)

  • Nam, Seunghoon;Ju, Su Heon;Ryu, Cheolho;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.353-362
    • /
    • 2016
  • As ships become larger and construction of offshore plants increases recently, the amount of outsourcing has increased accordingly in the shipyard. Consequently, the system integration in terms of SCM (Supply Chain Management) of information and material flows has become much more important. Especially, since the SCM in the shipbuilding industry is operated in accordance with the production planning in connection with design, purchasing and production process which are the main components of the supply chain, the best production plan has to be established over the whole scheduling activities from the long-term planning to the short-term planning. The paper analyzes the characteristics of the SCM and the production planning system and suggests the need and the direction of APS (Advanced Planning System) development specialized in the supply chain management only for shipbuilding industry. Furthermore, propose a new SCP-Matrix (Supply Chain Planning Matrix), which is the basis of the APS development, appropriate for the shipbuilding industry and draw the core function of the APS module for the practical production plan.

Crack arrestability of thick plates for shipbuilding (조선용 극후물재의 취성균열 정지 특성 평가)

  • An, Gyu-Baek;Park, Jun-Sik;Jeong, Bo-Yeong;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.3-5
    • /
    • 2007
  • In recent time there are vigorous requirement for the use of thick steel plate in various industrial fields including shipbuilding industry. Especially, with the continual increases in marine transportation volumes on a global scale, the steel of container ships have become thicker and thicker with the increased size of ships. In addition to, the brittle crack arrestability of heavy thick plates were big issue, in recently. In this study, crack arrest test were conducted in order to investigate the crack arrestability of thick plates for shipbuilding steels, where test plate thickness were 50mm and 80mm. This paper introduce the brittle crack arrestability of heavy thick plates for shipbuilding.

  • PDF

A study on the effect to yongrak phenomenon of submerged arc welding depending on the plasma cutting surface characteristics (플라즈마 절단면 특성이 서브머지드 아크용접 용락 현상에 미치는 영향에 관한 연구)

  • Kim, Jeongtae;Jeong, Hyomin;Ji, Myoungkuk;Chung, Hanshik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • This paper was to study the effect to Yongrak phenomenon of I groove submerged arc welding depending on the plasma cutting surface characteristics, and how to reduce the causes and characteristics Yongrak phenomenon. Shipbuilding and marine structures is designed to use the thick plates and welded by high current to obtain deep penetration. Yongrak phenomenon has been occurred frequently depending on the quality of cutting surface and it makes degrade of the welding quality and modification of the welding. As a result, it was confirmed that I Groove plasma cutting characteristics get bevel form of 2 to 4 degrees to one side direction from the vertical position with Yongrak phenomenon. This is the main reason of Yongrak phenomenon in butt joint welding and 4 degree reverse bevel on the upper surface of base metal by submerged arc welding brought the effect of significant reduction of Yongrak phenomenon.

Development of production planning system for shipbuilding using component-based development framework

  • Cho, Sungwon;Lee, Jong Moo;Woo, Jong Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.405-430
    • /
    • 2021
  • Production planning is a key part of production management of manufacturing enterprises. Since computerization began, modern production planning has been developed starting with Material Requirement Planning (MRP), and today Enterprise Resource Planning (ERP), Advanced Planning and Scheduling (APS), Supply Chain Management (SCM) has been spreading and advanced. However, in the shipbuilding field, rather than applying these general-purpose production planning methodologies, in most cases, each shipyard has developed its own production planning system. This is because the applications of general-purpose production planning methods are limited due to the order-taking industry such as shipbuilding with highly complicated construction process consisting of millions of parts per ship. This study introduces the design and development of the production planning system reflecting the production environment of heavy shipyards in Korea. Since Korean shipyards such as Hyundai, Daewoo and Samsung build more than 10 ships per year (50-70 ships in the case of large shipyards), a planning system for the mixed production with complex construction processes is required. This study draws requirements using PI/BPR (process innovation and business process reengineering) methodology to develop a production planning system for shipyards that simultaneously build several ships. Then, CBD software development methodology was applied for the design and implementation of planning system with drawn requirements. It is expected that the systematic development procedure as well as the requirements and functional elements for the development of the shipyard production planning system introduced in this study will be able to present important guidelines in the related research field of shipbuilding management.

Analysis of Integration and Growth Factors for Maritime Industry -With focus on Jeollanamdo Province-

  • Kim, Un-Soo;Kim, Hwa-Young
    • Journal of Navigation and Port Research
    • /
    • v.43 no.2
    • /
    • pp.122-133
    • /
    • 2019
  • The maritime industry has emerged as a new growth engine. The municipalities that own the port are trying to add value through the maritime industry. Overseas port cities are also creating maritime industrial clusters to generate profits and strengthen competitiveness. Therefore, it is very important to understand the comparative status of the domestic maritime industry by region. Based on this analysis, it is possible to establish maritime industrial clusters and strategies for integration. This study analyzed the structure of the maritime industry located in Jeollanamdo province, the southwestern part of Korea. Through the analysis of existing literature, the maritime industry was reclassified into 5 major categories, 21 subcategories, and 84 subcategories. Based on the reclassified maritime industry, the analysis of the Jeollanamdo province maritime industry was based on applying the location quotient and the shift-share analysis. As a result of analyzing the geographical location of Jeollanamdo province, other industries showed the highest value of 2.790, followed by fisheries (2.227), shipbuilding industry (1.164) and marine tourism industry (0.554). The growth effect of the maritime industry in Jeollanamdo province was 35,323 people, and net growth effect excluding national growth effect was 11,945 people. In particular, the net growth effect of the shipbuilding industry was the highest at 11,320, followed by shipping logistics (6,371) and marine tourism (1,529). On the other hand, there was no net growth effect in fisheries. The results of this study can be used as basic data for the construction of the maritime industrial cluster for Jellanamdo province in the future.

Simulation of Subassembly Production at Shipyards

  • Hertel, Erik;Nienhuis, Ubald;Steinhauer, Dirk
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • To survive in the current shipbuilding industry it is of vital importance for shipyards to achieve an optimal utilization of resources, make an achievable planning and ensure that this planning is kept. Possible problems should be eliminated before production starts and if unexpected disturbances occur in the actual production the right measures should be taken. Due to the dynamic nature of the production process, the continuous variation in products and the complexity of both, all this can hardly be achieved with conventional static planning and analysis systems. Simulation provides a solution here, since this enables the modelling and evaluation of the dynamic relations between product and production process. After a global introduction to production simulation in general and the application of simulation at the Flensburger shipyard, this paper presents a tool that has been developed to simulate the various complex assembly processes taking place at shipyards. Subsequently the simulation model for the subassembly production at Flensburger, in which this tool is applied, will be discussed.

Simulation of Contacts Between Wire Rope and Shell Plate of a Block for Shipbuilding Industry based on Multibody Dynamics (다물체계 동역학을 기반으로 한 와이어로프와 조선용 블록 외판 사이의 간섭 시뮬레이션)

  • Jo, A-Ra;Ku, Nam-Kug;Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.324-332
    • /
    • 2012
  • In this paper, a method for calculating the contact force and the frictional force caused by contacts between the wire rope and the rigid body is introduced based on multibody dynamics. And the method is applied to a simulation of contacts between the wire rope and the shell plate of a block that can occur during shipbuilding. The wire rope is composed of a number of lumped masses and the wire rope segments that connect the masses. After calculating the position of interference, we inserted a contact node into the wire rope. We then derived the equations of motion of the wire rope and the rigid body using augmented formulation based on multibody dynamics taking into account the constraints between the contact node and the rigid body. Using the equations, we were able to obtain the constraint force between the contact node and the rigid body, and calculate the contact force and the frictional force, based on which the position of the contact node was corrected. Finally, we applied our results to perform simulation of contacts between the wire rope and the shell plate of a block in order to verify the efficacy of the method proposed in this paper.

Overview of the Korean Marine Industry and VPP Analysis of a 28ft Sailing Yacht (대한민국의 해양 레저 시장 및 28ft급 세일요트의 VPP 성능해석 연구)

  • Yeongmin Park;Hoyun Jang;Minsu Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2024
  • The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.

A Study on Education Curriculum for Human Resource of Offshore Plant (해양플랜트인력양성을 위한 교육과정개발에 대한 연구)

  • Lee, Chang-Hee;Lee, Ji-Woong;Chae, Jong-Ju
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.498-509
    • /
    • 2014
  • Offshore plants is an intensive industry where real value is able to be created when EPCIC(Engineering, Procurement, Construction, Installation, Commissioning) is combined. Many universities and educational institutions have established major fields and graduate schools related in offshore construction and engineering as well as safety training and occupational courses. Most of the personnel who have graduated and passed those educational institutions have been working in domestic shipbuilding companies and marine equipment manufacturers. Therefore, customized education and training should be developed according to the educational demands required and then skilled personnel are needed to be supplied at proper times. This study, therefore, has found personnel demands inside and outside the country and occupational sections of offshore plants. Consequently, this study suggests making up a council comprised of shipbuilding companies, marine equipment manufacturers and educational institutions with government organization, and also researches the necessity of getting a job of personnel trained by the customized education. These results are expected to contribute to the development of education curriculum of domestic offshore plant as well as ODC(Offshore Development Center).

Development of Numerical Simulation of Particle Method for Solving Incompressible Flow (비압축성 유동 해석을 위한 입자법 수치 시뮬레이션 기술 개발)

  • Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo;Kim, Young-Hun;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • A particle method recognized as one of gridless methods has been developed to investigate incompressible viscous flaw. The method is more feasible and effective than conventional grid methods for solving the flaw field with complicated boundary shapes or multiple bodies. The method is consists of particle interaction models representing pressure gradient, diffusion, incompressibility and the boundary conditions. In the present study, the models in case of various simulation condition were checked with the analytic solution, and applied to the two-dimensional Poiseuille flow in order to validate the developed method.