• Title/Summary/Keyword: Shipbuilding Productivity

Search Result 128, Processing Time 0.022 seconds

An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position (GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Ji-Hye;Lee, Jong-Pyo;Kim, Young-Su;Na, Sang-Oh
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

Study on Erection Block Positioning Using Genetic Algorithm (유전자 알고리즘을 이용한 탑재블록 위치제어에 관한 연구)

  • Shin, Sung-Chul;Lee, Jae-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • In the shipbuilding industry, accuracy management is one of the keys for strengthening competitiveness. However, ship block errors are unavoidable in the block erection stage because of the deformation of the blocks. Currently, accuracy managers decide whether or not block corrections are needed, based on measured and designed point data. They adjust the locations of hull blocks so that the blocks are aligned with other assembly blocks based upon the experience of production engineers. This paper proposes an optimization process that can adjust the locations of ship blocks during the erection stage. A genetic algorithm is used for this optimization scheme. Finally, the feasibility of the proposed method is discussed using several case studies. We found that the proposed method can find the optimized re-alignment of erection blocks, as well as improve the productivity of the erection stage.

Simulation of Plate Deformation due to Triangle Heating Using Inherent Strain Method (고유변형도법을 이용한 삼각가열에 의한 판 변형의 시뮬레이션)

  • Jang, Chang-Doo;Ko, Dae-Eun;Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.703-709
    • /
    • 2008
  • In the shipyard, line heating and triangle heating are two major processes for forming curved plates in various shapes. While there have been many studies on line heating, triangle heating has been rarely studied due to its complicated heating process with irregular multi-heating paths and highly concentrated heat input. As the triangle heating process is one of the most labor-consuming jobs in shipyards, it is essential to study the automation as well as improvement of triangle heating process in order to increase hull forming productivity. In this study, a pioneering attempt to simulate triangle heating was made. A circular disk-spring model was proposed for elasto-plastic analysis procedure of triangle heating and the inherent strain method was also used to analyze the deformation of plates. Simulation results were compared with those of experiments and showed good agreement. It is shown that the present approach including analysis model used in this study is effective to simulate the triangle heating for plate forming process in shipbuilding.

A Study on the Automatic Matching Algorithm of Transporter and Working Block for Block Logistics Management (블록 물류 관리를 위한 트랜스포터와 작업 블록 자동 매칭 알고리즘 연구)

  • Song, Jin-Ho;Park, Kwang-Phil;Ok, Jin-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.314-322
    • /
    • 2022
  • During the shipbuilding process, many blocks are moved between shipyard workshops by block carrying vehicles called a transporter. Because block logistics management is one of the essential factors in enhancing productivity, it is necessary to manage block information with the transporter that moves it. Currently, because a large amount of data per day are collected from sensors attached to blocks and transporters via IoT infrastructure installed in shipyards, automated methods are needed to analyze them. Therefore, in this study, we developed an algorithm that can automatically match the transporter and the working block based on the GPS sensor data. By comparing the distance between the transporter and the blocks calculated from the Haversine formula, the block is found which is moved by the transporter. In this process, since the time of the measured data of moving objects is different, the time standard for calculating the distance must be determined. The developed algorithm was verified using actual data provided by the shipyard, and the correct result was confirmed with the distance based on the moving time of the transporter.

On the Design of Lifting Lugs Based on the Ultimate Strength (최종강도에 기초한 리프팅 러그의 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • Lifting lugs are frequently used to transport and to turn over blocks of ship and offshore structures in a shipyard. As the shipbuilding technology has been developed, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economy as well as safety in design of lug structure, needed is a more rational design procedure based on the ultimate strength derived through the rigorous non-linear structural analysis considering both the material and geometric non-linearity. This study is aimed at deriving the optimum design of T type lug structure which is frequently used in a shipyard. The optimum thickness of lug's main body is to be determined based on the results of non-linear strength analysis. As far as the present results for T type lugs having various capacity are concerned, it can be said that the present optimum design result can guarantee both safety and economy. From the fact that any regular trend cannot be found in weight reduction to the capacity of lugs, it seems to be necessary to review the current design procedure of lug structure. The present design procedure can be extensively used in design of various types of lug structures used in shipyard.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

A Study on Application of Corrugated Invar Strake Edge in the Membrane Cargo Containment of LNG Carriers (LNG선 화물격납용기 Invar strake edge 이음부 형상 개선에 관한 연구)

  • Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.74-80
    • /
    • 2009
  • The membrane of the LNG carriers consists of thin strips of INVAR(Fe-36%Ni) steel plates, and the junction between INVAR strips is fabricated by welding. Thousands of the raised edge joints, regularly spaced, are located around all the side of the tank corner near the transverse bulkhead, and TIG welding is manually made on the top of the raised edges. Since the thickness of all the laminated edge plies is extremely thin and the weld position is under a bad accessibility, highly skilled workers are required to perform welding relatively for a long welding time. An alternative scheme for the corner membrane fabrication is proposed in the study to improve the installation workability and thus productivity. The scheme replaces the welded edges with the preformed corrugation ones. A panel strip with regularly-spaced corrugations is installed at the corner instead of the individual flat strip of which edge is vertically raised to be welded with the adjacent strip. In the study, a series of the evaluation on the corrugated edge members was performed to assess the applicability to the real LNG carrier fabrication. Opening displacement at the raised edge was experimentally examined. Elastic stiffness regressed from the displacement was nearly same in both edge types. Edge displacement and local stresses were calculated under hydrostatic pressure and temperature change due to liquefied cargo. Fatigue test was performed on both corrugated and welded edge specimens consisting of two or five plies of invar strips. Fatigue strength of the corrugated specimens was not less than that of the welded specimens.

Prediction of the Top-bead width of Tandem GMA Welding Processes Using the STACO Model (STACO 모델을 이용한 탄템 GMA 용접공정의 표면비드 폭 예측)

  • Lee, Jong Pyo;Park, Min Ho;Kim, Do Hyeong;Jin, Byeong Ju;Son, Joon Sik;Kang, Bong Yong;Shim, Ji Yeon;Kim, Ill Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Tandem arc welding is a guarantor for high efficiency and cost saving since the quantity of wire which is deposited in the welding is approximated 30% greater that in conventional welding. The welding process is now being successfully applied in many industries. However, in the case of tandem arc welding, good quality and high productivity should depend on the welding parameters. Therefore, an intelligent algorithms for the automatic tandem arc welding process has been necessarily required. In this study, a predictive model based on the neural network by using the data acquired during tandem gas metal arc (GMA) welding process has been developed. To verify the reliability of the developed predictive model, a mutual comparison with the surface of the top-bead width obtained from actual experiments has been analyzed.

Design and Implementation of PLC Automatic Welding System with Power-saving (전력 절약형 PLC 자동용접 시스템 설계 및 구현)

  • Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.6-12
    • /
    • 2015
  • The welding technology has been used in almost all industries such as automotive, shipbuilding, power plants and industrial machinery. In this study, the design and implementation of PLC $CO_2$ welding automation system were investigated. For these purposes, the structure analysis for driving supporter was performed and specification of automatic voltage regulator, mutual interface of system and circuit diagram were designed in order to contrive power-saving system. As the results, the stability of design for driving supporter could be convinced by numerical analysis and PLC automatic welding system was suitable for welding automation of structural-manufacturing factory capable of producing various and small amount products. Therefore, it was confirmed that PLC $CO_2$ welding automation system could contribute to productivity, stable quality and power-saving.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.