• 제목/요약/키워드: Shipbuilding Process Simulation

검색결과 81건 처리시간 0.016초

순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구 (Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks)

  • 서장훈;박동우;남동
    • 해양환경안전학회지
    • /
    • 제29권5호
    • /
    • pp.505-511
    • /
    • 2023
  • 본 논문에서는 소형어선의 운동 응답을 예측하기 위해 딥러닝 모델을 구축하였다. 크기가 다른 두 소형어선을 대상으로 유체동역학 성능을 평가하여 데이터세트를 확보하였다. 딥러닝 모델은 순환 신경망 기법의 하나인 장단기 메모리 기법(LSTM, Long Short-Term Memory)을 사용하였다. 딥러닝 모델의 입력 데이터는 6 자유도 운동 및 파고의 시계열 데이터를 사용하였으며, 출력 라벨로는 6 자유도 운동의 시계열 데이터로 선정하였다. 최적 LSTM 모델 구축을 위해 hyperparameter 및 입력창 길이의 영향을 평가하였다. 구축된 LSTM 모델을 통해 입사파 방향에 따른 시계열 운동 응답을 예측하였다. 예측된 시계열 운동 응답은 해석 결과와 전반적으로 잘 일치함을 확인할 수 있었다. 시계열의 길이가 길어짐에 따라서 예측값과 해석 결과의 차이가 발생하는데, 이는 장기 데이터에 따른 훈련 영향도가 감소 됨에 따라 나타난 것으로 확인할 수 있다. 전체 예측 데이터의 오차는 약 85% 이상의 데이터가 10% 이내의 오차를 보였으며, 소형어선의 시계열 운동 응답을 잘 예측함을 확인하였다. 구축된 LSTM 모델은 소형어선의 모니터링 및 경보 시스템에 활용될 수 있을 것으로 기대한다.