• Title/Summary/Keyword: Ship wake

Search Result 170, Processing Time 0.024 seconds

Computation of Turbulent Appendage-Flat Plate Juncture Flow (부가물-평판 접합부 주위의 난류유동 계산)

  • Sun-Young Kim;Kazu-hiro Mori
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.43-55
    • /
    • 1995
  • The turbulent flow around the strut mounted on the plate is studied numerically. The main objective of this paper is to validate the numerical scheme by the comparison of the computed results with the measured one, especially, to investigate the applicability of the Baldwin-Lomax(B-L) model to the juncture flow. Computations are made by solving Reynolds-averaged wavier-Stokes equation with MAC method. The computed results are compared with experimental data of Dickinson, collected in the wind tunnel at DTRC. Comparisons show good agreements generally except at the region of wake and very near the juncture. Reynolds stress model seems to be required to improve the accuracy applicable to the juncture flow in spite of the many simplification of the turbulence modelling in B-L model.

  • PDF

Algorithm for Performance Analysis of Vane-Wheel using Panel Method (패널법을 이용한 Vane-Wheel 성능해석 알고리즘)

  • Seok, Woo-Chan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • In this paper, we establish an analysis algorithm and a design procedure for a Vane-Wheel which is a freely rotating device behind a propeller, by using a panel method. Vane-Wheel's function is to extract energy from the propeller slipstream in turbine part which is inner part of the Vane-Wheel, and convert this energy into an additional propulsive thrust in propeller part which is outer part of the Vane-Wheel. Two parts must satisfy torque balance and thrust has to act to the ship's forward direction. A Vane-Wheel has large interaction effect with propeller since it is placed behind of the propeller. Therefore, in order to consider interaction effect correctly, incoming velocity to the Vane-Wheel in a circumferential mean wake was calculated considering induced velocity from propeller to the Vane-Wheel. Likewise, incoming velocity to the propeller was calculated considering induced velocity from the Vane-Wheel to the propeller. This process is repeated until a converged result is obtained.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

Measurement of Velocity Field Change around Stern of LNG Carrier Double Body Model by Propeller (프로펠러에 의한 LNG 운반선 이중모형 선미의 속도변화 계측)

  • Kim, Byong-June;Choi, Soon-Ho;Kim, Hyoung-Tae;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.448-457
    • /
    • 2005
  • The experiment was performed at the large wind tunnel of the Chungnam National University to measure the velocity distribution around the stern of a Liquefied Natural Gas Carrier model. The data, mean velocity vectors of turbulent shear flows at the stern and near-wake including the propeller plane, were obtained by a five-hole Pilot tube for the double body model fixed inside the wind tunnel test section. The present result of the double body model shows a close agreement with the result of the lowing tank experiment performed by the KRISO for the same ship model. The characteristics of the LNG stern flow are discussed based on the measured velocity distribution. The data can be very useful for the validation of some numerical methods in computational fluid dynamics.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

Numerical Study on the Enhancement of the Resistant Performance of ROV (선저청소로봇 저항성능 향상에 관한 수치적 연구)

  • Seo, Jang-Hoon;Jeon, Chung-Ho;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kim, Su-Ho;Kim, Tae-Hyung;Woo, Jong-Sik;Joo, Young-Sock
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.23-31
    • /
    • 2010
  • The flow around a remotely-operated vehicle (ROV) has been investigated numerically to improve the resistant performance by modifying the hull form of the ROV. In the case of the base hull form considered in this study, form drag rather than friction drag was the dominant component of total drag. Subsequently, the surfaces that were most susceptible to local pressure effects were modified to give them a more streamlined shape. Eleven different hull forms were chosen to undergo surface modification for drag reduction. In addition, four different boat-tail appendages with different slant angles were installed at the stern to reduce the wake vortices that are induced by the local regions of very low pressure. Consequently, a total of 11 different hull forms for drag reduction were considered. The final hull form, which combined the hull for which surface modification resulted in the lowest drag with a boat-tail appendage with a 15-degree slant angle, resulted in a drag reduction of 20%.

Computational Study of the Scale Effect on Resistance and Propulsion Performance of VLCC (대형 유조선의 저항 및 추진성능에 대한 축척효과의 수치적 연구)

  • Choi, Jung-Eun;Kim, Jung-Hun;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.222-232
    • /
    • 2011
  • This article examines the scale effect of the flow characteristics, resistance and propulsion performance on a 317k VLCC. The turbulent flows around a ship in both towing and self-propulsion conditions are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out in both model- and full-scale. A double-body model is applied for the treatment of free surface. An asymmetric body-force propeller is used. The speed performances including resistance and propulsion factors are obtained from two kinds of methods. One is to analyze the computational results in model scale through the revised ITTC' 78 method. The other is directly to analyze the computational results in full scale. Based on the computational predictions, scale effects of the resistance and the self-propulsion factors including form factor, thrust deduction fraction, effective wake fraction and various efficiencies are investigated. Scale effects of the streamline pattern, hull pressure and local flow characteristics including x-constant sections, propeller and center plane, and transom region are also investigated. This study presents a useful tool to hull-form and propeller designers, and towing-tank experimenters to take the scale effect into consideration.

A Propeller Design Method with New Blade Sections (새로운 단면을 이용한 고효율 프로펠러 설계법)

  • J.T.,Lee;C.S.,Lee;M.C.,Kim;J.Y.,Ahn;H.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.29-40
    • /
    • 1989
  • A new blade section of propeller is developed to obtain higher propeller efficiency and better cavitation performance. Eleven foil sections are carefully designed and manufactured to compare the lift-drag characteristics and cavitation performances. It is expected that the developed section behaves better in the vicinity of the ship's wake, where the angle of attack variation is large, because of its wider width in lift-drag and cavitation-free bucket diagrams. A propeller design method using the selected foil section is presented. Three chordwise loading shapes are selected to investigate the influence of the lift-drag ratios on the propeller efficiencies and cavitation performances. Three propellers are designed, which correspond to the selected chordwise loading shapes. Two more propellers which use existing foil sections are designed to compare the section performance.

  • PDF

A robust detection algorithm against clutters in active sonar in shallow coastal environment (연안 환경에서 클러터에 강인한 능동소나 탐지 알고리듬)

  • Jang, Eun Jeong;Kwon, Sungchur;Oh, Won Tcheon;Lee, Jung Woo;Shin, Keecheol;Kim, Juho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.661-669
    • /
    • 2019
  • High frequency active sonar is appropriate for detecting small targets such as a diver in coast environment. In case of using high frequency active sonar in shallow coastal environment, a false alarm rate is high due to clutters caused by marine biological noise, ship noise, wake, etc. In this paper, we propose an algorithm for target detection which is robust against clutter in active sonar system in shallow coastal environment. The proposed algorithm increases the rate of reduction clutter using calculation of statistical characteristics of signal and a clustering method. The algorithm is evaluated and analysed with sea trial data, as a result, that shows the rate of reducing rate of clutter of 96 % and over.