• Title/Summary/Keyword: Ship speed

Search Result 1,270, Processing Time 0.029 seconds

Panel Cutting Method a New Approach in Hull Surface Panel Generation (패널절단법 선체표면 패널생성을 위한 새로운 시도)

  • Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.638-646
    • /
    • 2006
  • In this paper a new hull-panel generation algorithm named 'Panel Cutting Method' was developed to solve the flow phenomena around a ship advancing on the free surface with a constant speed. In this algorithm the non-linearity of the free surface boundary conditions was taken into account using the iterative method and the raised panel was used at each iteration step. Numerical calculations were performed to investigate the validity of the developed algorithm using the series $60(C_B=0.60)$ hull The wave resistance coefficients, the wave patterns and the wave heights were compared between the computed and the experimental results at Fn=0.25 and 0.316. The comparison showed good agreement between computation and experiment.

The Northern Sea Route Transit Modeling of Icebreaking Cargo Vessels (쇄빙상선의 북극해 항로 항행 모델링)

  • Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.340-347
    • /
    • 2007
  • Main purpose of the study is to develop a transit model for icebreaking cargo vessels in the Northern Sea Route and to select optimum sea routes with the shortest navigation time and the lowest operation cost. This numerical model executed with basic information such as ship capabilities, transit directions and months of transit, can calculate total transit distance and elapsed time, mean speed, operation cost for each vessel. In the transit model. environment information such as the site-specific ice conditions, wave and wind states are utilized for four different months (April, June, August, and October) along the Northern Sea Route. The model also defines a necessary period of an icebreaker escort. Then the optimum sea routes are selected and visually displayed on the digital map using a commercial software ArcGIS. Usefulness of the selected sea routes is discussed.

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

An Experimental Study on the Performance of a Surface Piercing Propeller in Tunnel (수면관통형 터널 프로펠러의 성능해석을 위한 실험적 연구)

  • Jeong, Seong-Wook;Lee, Seung-Hee
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.107-117
    • /
    • 2007
  • A surface piercing propeller (SPP) in tunnel has been proposed recently as a new propulsion system for a high speed air cavity ship. The purpose of the present study is to investigate the characteristics of the SPP in tunnel through a series of model tests. A model propulsion system is placed on a dummy body made of Acrylics. The tunnel is divided into two regions by a guide vane extending from the inlet to the center of the propeller shaft. Air has been supplied from an air nozzle placed at the bottom of the dummy body and the changes in propeller performances caused by the air flow are investigated. The measurements are done for open water and in-tunnel conditions, both for fully and partially submerged propeller. The influence of the guide vane configurations on the propeller performance is also studied. The experiments are performed at the variable pressure circulation water channel of Inha University.

  • PDF

Hydro-structural issues in the design of ultra large container ships

  • Malenica, Sime;Derbanne, Quentin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.983-999
    • /
    • 2014
  • The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling) and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m) which leads to the lower structural natural frequencies, very large operational speed (> 20 knots) and large bow flare (increased slamming loads). The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

A Comparative Study on Policy of Modal Shift for Enhancing of Eco-friendly Rail Freight Transportation (친환경수단으로서의 철도화물운송 증대를 위한 Modal Shift 정책 비교 연구)

  • Lee, Yoon-Mi;Moon, Dae-Seop;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2455-2462
    • /
    • 2008
  • Global warming has become one of the most important social responsibilities. After Kyoto protocol for greenhouse gas reduction by climatic change convention came into effect, developed countries are presenting various policies to reduce greenhouse gas that is produced in transport field. One of those policies is modal shift that change from road freight to sea, inland waterway and railway transportation that is eco-friendly. Because increase of road freight brings about road congestion and accident, logistics cost, air pollution and green house gases. Railways are superior to all other modes of transport in mass transportability, high speed, timeliness, safety and environmental-friendliness, but the railway industry has been pushed behind in competition. In developed country's government actively promoted relevant legislation, policies, and countermeasures known as modal shift policies to shift freight transport from road to large volume mode such as railway and ship. In this paper, we discuss the current situation in modal shift, compare it with cases in other countries EU and Japan, identify problems in Korea, and propose the following ways to enhance competitiveness of rail freight.

  • PDF

Structural Characteristics of Pultruded Glass Fiber Reinforced Composite Strip (풀투루젼으로 제조한 유리섬유강화 복합소재를 스트립의 구조적 특성)

  • 이성우;신경재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.11-18
    • /
    • 1999
  • Recently advanced countries are now beginning to use ACM (Advanced Composites Material), which is mostly used in the industry of airplane, ship building and sports equipments, in the construction industry. Compared with existing construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant property. Among other manufacturing process of ACM, pultrusion is one of the promising one of civil engineering application. In this paper, the structural characteristics of pultruded GFRP strip were studied. Major parameters to influence structural behavior of pultruded GFRP are considered to be fiber volume fraction, die temperature, pulling speed and fiber orientations. The effect of these parameters are studied by experimently and analytically. From this study, it is concluded that fiber volume fraction and fiber orientations influence more on the mechanical property of pultruded GFRP. In addition to above parametric study, off-axis tests were carried out and the results are compared with failure theories. It showed that they agree well each other. Since this study is carried out in limited scope, further research on the reinforcement in the transverse direction, experiment on the compressive strength and research on the durability should be conducted for wide application of pultruded GFRP sections.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

Study of Hull Form Development of 5-Ton-Class Catamaran-Type Coastal Fishing Boat for Welfare Accommodation of Fishing Crew (어선원 복지공간 확보를 위한 5톤급 쌍동형 연안어선 선형개발에 관한 연구)

  • Jeong, Uh-Cheul;Kim, Hyun-Soo;Kwon, Soo-Yeon;Choi, Ji-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • This paper reports the hull form development and resistance performance of a 5-ton-class catamaran-type coastal fishing boat. The weight estimation and preliminary design were basically extracted from existing coastal fishing vessels. In addition, the resistance performance was investigated using a model test in a high-speed circulating water channel and was analyzed in comparison to an existing catamaran fishing vessel. As a result, the modified hull achieved an approximately 30% reduction in resistance compared to the previous hull. The stability or boarding sensitivity of the modified hull form was more stable or comfortable than the original hull form based on a trim and sinkage comparison between the two boats.

Pressure Measurement of Planing Hull Stern Bottom by Tactile Sensors (접촉식 센서를 이용한 고속 활주선 선미부 압력 계측 시험)

  • Park, Sae Yong;Park, Jong Yeol;Lee, Shin Hyung;Kim, Dong Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.431-437
    • /
    • 2018
  • The running attitude of a planing hull is determined by the pressure distribution on the hull bottom, and it significantly affects hydrodynamic performance of the ship, i.e., resistance, maneuverability, and seakeeping ability. Therefore, it is essential to investigate pressure distribution on the hull bottom in order to improve hull design. In the present study, a novel pressure measurement system using tactile sensors was introduced for a planing hull. The test model was a 23 m-class planing hull with a hard chine. The pressure measurement showed that the pressure at the transom was lower than the atmospheric pressure, owing to flow separation at the transom.