• Title/Summary/Keyword: Ship size ratio

Search Result 41, Processing Time 0.023 seconds

Ship Detection Using Edge-Based Segmentation and Histogram of Oriented Gradient with Ship Size Ratio

  • Eum, Hyukmin;Bae, Jaeyun;Yoon, Changyong;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.251-259
    • /
    • 2015
  • In this paper, a ship detection method is proposed; this method uses edge-based segmentation and histogram of oriented gradient (HOG) with the ship size ratio. The proposed method can prevent a marine collision accident by detecting ships at close range. Furthermore, unlike radar, the method can detect ships that have small size and absorb radio waves because it involves the use of a vision-based system. This system performs three operations. First, the foreground is separated from the background and candidates are detected using Sobel edge detection and morphological operations in the edge-based segmentation part. Second, features are extracted by employing HOG descriptors with the ship size ratio from the detected candidate. Finally, a support vector machine (SVM) verifies whether the candidates are ships. The performance of these methods is demonstrated by comparing their results with the results of other segmentation methods using eight-fold cross validation for the experimental results.

A Development of the Ship Weight Estimating Method by a Statistical Approach (통계적 접근법에 의한 선박 중량추정 방법 개발)

  • Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Accurate weight prediction methods are an essential of the ship design in both ship cost managements and performance satisfactions. When no parent or similar ships are available, an adequate method of the ship weight estimating is required. In this study, there was carried out to develop the ship weight estimating method for the preliminary design phase. The weight estimating methods were first surveyed by the references and summarized their characteristics. The weight estimation method by statistical approach was developed for the container ship because the containerized transportation markets is gradually growing and ship's size and loading capacity are rapidly enlarged. The correlation analysis and the multiple regression analysis were used for developing the weight estimating method. As a results of evaluating the developed method, the error ratio of the variation between estimated weight and ship's data was about 5%. And it was only 1% difference with the calculating weight of conceptual design results by shipyard design team that the estimating weight of ultra-large container ship was predicted by the developed method.

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

Variation of the Turning Circle by the Rudder Angle and the Ship's Speed-Mainly on the Training Ship KAYA- (타각과 선속에 따른 선회권의 변화-실습선 가야호-)

  • Kim, Min-Seok;Shin, Hyeon-Ok;Kng, Kyoung-Mi;Kim, Min-Seon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.156-164
    • /
    • 2005
  • The size of the ship's turning circle is influenced by various factors, such as block coefficient, underwater side shape, rudder area ratio, draft, trim and Froude's number. Most of them are already fixed on departure from a port. However, the ship's speed and the rudder angle are controllable factors which operations are able to change optionally during sailing. The DGPS measured the turning circles according to the ship's speed and the rudder angle. The maximum advances by slow and full ahead were 302m and 311m, and the maximum transfers were 460m and 452m, respectively. There occurs almost no difference in size of the turning circle by variation of the ship's speeds. When the rudder angles were changed to $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$, the maximum advances were 447m, 271m and 202m, and then also the maximum transfers 657m, 426m and 285m, respectively. The diameter of the tuning circle was decreased exponentially when the rudder angle was increased. The maneuverability was better when the direction of turning and propulsion of propeller are in the opposite direction rather than in the same one togetherm. The distance of the maximum transfer was always bigger than that of the maximum advance.

A Study on the Minimum Safe Distance between Two Vessels in Confined Waters

  • Lee, Chun-Ki;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.561-565
    • /
    • 2014
  • This paper is mainly concerned with the interaction effects between two vessels and sidewall with a mound. Experimental study on hydrodynamic forces between ship and sidewall with a mound was already shown in the previous paper, measured by varying the distances between ship and sidewall. The ship maneuvering simulation was conducted to find out the minimum safe distance between vessels, which is needed to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. When and if one vessel passes the other vessel through the proximity of sidewall with a mound, the spacing between two vessels is needed for the velocity ratio of 1.2, compared to the case of 1.5. Also, for the case of ship-size estimation, the ship maneuvering motion is more affected by interaction effects for the overtaken small vessel, compared to the overtaking large vessel.

A Study on Determining Factors of Hull Insurance Rate (선박보검과준의 결정요인에 관한 연구)

  • 김경건;민성규
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.59-81
    • /
    • 1994
  • Korean property and liability insurance companies have underwrited hull insurance without proper undrewriting ability. But after April 1996. in case of Korean insurance market being opened the companies have to make hull insurance rate by themselves. Accordingly, in this study, the writer embodies important factors in making hull insurance rate by an empirical survey. In empirical survey, the writer used a questionnaire, 74 proper data was obtained from 96 officers working in making hull insurance rate in 12 Korean property and liablity insurance companies and 24 the foreign companies at home. Reliability was tested by Cronbach's Alpha and a conceptual validity by Factor Analysis. Hypothesis estabilished in this study was tested by Correlation and Multiple Regression Analysis. Results of testing hypothesis are as follows: Firstly, the traits of insurer and the assured influence significantly(P<0.05) on making hull insurance rate. Secondly, expected loss ratio, ship manager, ship's age, insured amount, level of the cost of repairing and salvage, shipowner, period of insurance, level of overseas rating, profit and expense, trading limits, ship's classification, conditions of insurance, and ship's size influence significantly(P<0.05) on making hull insurance rate.

  • PDF

A Study for Recent Cruise Ship Design and Construction Trends (신조 크루즈 선박의 설계 및 건조 경향에 관한 조사 연구)

  • Kim, Dong-Joon;Park, Hyun-Soo;Choi, Hyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.151-158
    • /
    • 2005
  • The concept of recent cruise ship design is changing rapidly according to the expansion of cruise fleet sizes, emphasis on passenger safety and tightened requirements for ecotourism. In this view point, this study focuses on investigative analysis for the recent trends in cruise ship design and construction. Based on the shipyard production logs and the cruise industry's annual news, the data for principal dimensions of newly built cruise ships, their hull forms and propulsion devices and the characteristics of cabin and public spaces are collected and analysed. As expected, it is found that the size of cruise ships is growing and the design concept is becoming more leisure-oriented for all ages rather than lust sightseeing. For producing a greater ton/pax ratio, the adoption of podded electric propulsion system, outside cabins and balcony spaces is a common trend in recent cruise ship design.

Establishment of Navigational Risk Assessment Model Combining Dynamic Ship Domain and Collision Judgement Model (선박동적영역과 충돌위험평가식을 결합한 항해위험성평가모델 전개)

  • Kim, Won-Ouk;Kim, Chang-Je
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This paper considers the Marine Traffic Risk Assessment for fixed and moving targets, which threaten officers during a voyage. The Collision Risk Assessment Formula was calculated based on a dynamic ship domain considering the length, speed and maneuvering capability of a vessel. In particular, the Navigation Risk Assessment Model that is used to quantitatively index the effect of a ship's size, speed, etc. has been reviewed and improved using a hybrid combination of a vessel's dynamic area and the Collision Risk Assessment Formula. Accordingly, a new type of Marine Traffic Risk Assessment Model has been suggested giving consideration to the Speed Length Ratio, which was not sufficiently reflected in the existing Risk Assessment Model. The larger the Speed Length Ratio (dimensionless speed), the higher the CJ value. That is, the CJ value is presented well by the Speed Length Ratio. When the Speed Length Ratio is large, states ranging from [Caution], [Warning], [Dangerous] or [Very Dangerous] are presented from a greater distance than when the Speed Length Ratio is small. The results of this study, can be used for route and port development, including dangerous route avoidance, optimum route planning, breakwater width, bridge span, etc. as well as the development of costal navigation safety charts. This research is also applicable for the selection of optimum ship routing and the prevention of collisions for smart ships such as autonomous vessels.

Estimation of maneuvering characteristic of training ship Baek-Kyung according to water depth (수심에 따른 실습선 백경호의 조종성능 추정)

  • Chun-Ki LEE;Kyung-Jin RYU;Yoo-Won LEE;Su-Hyung KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.261-263
    • /
    • 2023
  • Recently, universities of fisheries and institutions related to fisheries are actively carrying out a project to build new fisheries training ships. These new fisheries training ships are significantly larger in size and longer in length than the previous ships. In addition, these new ships basically have space that can accommodate more than 100 crew and passenger. On the other hand, they are excluded from IMO maneuverability evaluation since the size of these ships are still less than 100 m in length (LBP). These results have had an impact on the study of maneuverability of fishing vessels including the fisheries training ships. Against these backgrounds, the authors conducted a study to estimate the maneuvering characteristics of fisheries training ship Baek-Kyung according to depth in order to prepare a maneuvering characteristic index that enables the large fisheries training ships to navigate more safely using a modified empirical formula. It was confirmed that the maneuvering characteristics of Baek-Kyung changed significantly as the values of the hydrodynamic force coefficients changed as the water depth gradually decreased from around 1.5 (approx. 8 m in depth) of the ratio of the water depth to the ship draft. The results of this study will not only help navigators understand the maneuvering characteristics of Baek-Kyung, but also serve as an indicator when navigating in shallow water. In addition, the accumulation of these results will serve as a basis for future study on maneuverability of fishing vessel types.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.