• Title/Summary/Keyword: Ship manoeuvring

Search Result 85, Processing Time 0.021 seconds

A Study on the Hydrodynamic Interaction Forces between Ship and Bank Wall in the Proximity of Bank (측벽부근을 항해하는 선박과 측벽간의 상호 간섭력에 관한 연구)

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • It is well known that the hydrodynamic interaction forces between ship and bank wall affect ship manoeuvring motions. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic interaction forces between ship and bank wall is investigated. The numerical simulations on hydrodynamic interaction force acting on a ship in the proximity of bank wall are carried out by using this theoretical method. The theoretical method used in this paper will be useful for practical prediction of ship manoeuvrability at the initial stage of design, for discussion of marine traffic control system and for automatic control system of ship in confined waterways.

A Study on Adequacy of Audit Techniques and Advancement of Ship-Handling Simulation for Maritime Safety Audit (해상교통안전 진단 기술의 적정성 및 선박조종시뮬레이션 고도화)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • SHS(Ship-Handling Simulator) is virtual generation of vessel traffic situation under various environmental conditions. Recent, with the introduction of MSA(Maritime Safety Audit), SHS is being used as a key facility to determine the safety of navigation. However, the current audit techniques specified in the implementation guidance of MSA have been prepared by generalizing common procedures and evaluation methods used by institutions operating simulator systems. Therefore, they need to be reviewed and supplemented. This study analyzed the adequacy of current audit techniques based on the limitations and problems, then suggested the advanced scheme of SHS such as standardization of ship models, standard manoeuvring and evaluation method. The results of this research will contribute to improving the quantification and reliability of audit techniques used in the MSA as well as upgrading of the simulator system.

Study on the Manoeuvring Characteristics of a Ship with Stern Bulb (선미벌브를 갖는 선박의 조종특성에 관한 연구)

  • Kyoung-Ho Sohn;Gyoung-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.65-79
    • /
    • 1994
  • In the present paper, An emphasis is laid upon effects of stern bulb on hydrodynamic property and manoeuvring performance. We carried out captive model tests in circulating water channel with two ship models of which the frame lines of aft bodies are different. such as normal stern form and stern form with bulb, but of which the other parts are exactly same. The tests conducted consist of hull resistance test, effective thrust measurement, oblique tow test, and measurements of factors related to rudder force. From the results of model tests, we discussed effects of stern bulb on hull forces and on hull-propeller-rudder interactions, comparing with normal stern form. Furthermore, we also discussed effects of stern bulb on course stability. turning ability. spiral characteristics and zig-zag manoeuvre by computer simulation. As a result, it is clarified that the adoption of stern bulb makes course stability the worse and turning ability the better. The difference of the hydrodynamic derivatives of naked hull between two ship forms cause the worse course stability of the ship with stern bulb. The differences of the effective inflow velocity to rudder and hull forces induced by steered rudder cause the better turning ability of the ship with stern bulb.

  • PDF

The Interaction Effects Between Two Vessels in the Proximity of Bank Wall in Restricted Waterways (제한수역에서 측벽부근을 항해하는 두 선박간의 상호영향)

  • Lee Chun-Ki;Yoon Jeom一Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.49-55
    • /
    • 2004
  • The manoeuvring of vessels and hydrodynamic interaction between them and bank wall in restricted waterways have been treated as important factors in channel design and safe piloting in the water areas. This paper examines the interaction forces and moments acting on two vessels running closely in the proximity if bank wall. The object if this paper is to propose a guideline of safe velocity if vessels and distance between them for navigating safely in confined sea areas.

  • PDF

Experimental Study on Manoeuvring Hydrodynamic Derivatives and Interaction Coefficients of Full Form Ship (비대선형의 조종 유체력 미계수 및 간섭 계수에 관한 실험적 연구)

  • 최명식;윤점동;이경우
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1994
  • In marine transportation of bulk cargoes such as crude oil. ore, coal etc., a lot of full form ship which have poor manoeuvrability were presented in many countries. Since ship manoeuvrability depends upon many parameters namely hydrodynamic derivatives, interference factors etc., as external forces, it is of great importance that we investigate these values of parameters on analysis of manoeuvrability. In this paper, we investigated and analyzed interaction coefficients among hull-propeller-rudder for a full form ship by captive model test in circulating water channel, and then compared with experimental results by PMM test. A tanker model ship which has 0.83 as block coefficient and MMG mathematical models were used in this experiment. Almost same tendencies were found in qualitative analysis, even though more serial experiments were demanded in quantitative analysis.

  • PDF

Forward Speeds and Turning Trajectories of a KSUPRAMAX Model Ship in Long-Crested Irregular and Equivalent Regular Waves (KSUPRAMAX 모형선의 장파정 불규칙파 중 전진속도 및 선회궤적을 유사 재현하는 규칙파 탐색)

  • Dong-Jin Kim;Kunhang Yun;Chang-Seop Kwon;Yeon-Gyu Kim;Seung-Hyun Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.258-266
    • /
    • 2024
  • It is necessary to predict the ship's manoeuvrabilities in waves for its safe operations in adverse weather. At the early design stage, free-running model tests can be performed to estimate the ship's manoeuvring performance in irregular wave conditions. The wave elevations are randomly varied with times in irregular waves, large deviations of the manoeuvring performance indices are likely to occur depending on the start time of steering scenarios. In this study, a KSUPRAMAX model ship's manoeuvres in long-crested irregular waves are reproduced in the equivalent regular waves. The equivalent regular waves are searched from the energy flux relations between long-crested irregular and regular waves. But there are differences of forward speeds in the model tests, regular wave height and period are modified so that both the forward speed and the trajectory drift in regular waves are similar to those in irregular waves. In addition, low speed course-keeping tests are performed with various wave incident angles in irregular and regular waves. It is confirmed that check helms, drift angles, and speeds as well as trajectories in irregular waves are similar to those in equivalent regular waves.

A Study on the Safe Manoeuvring between Vessels under the Strong Current in Restricted Waterways (제한수역에서 강조류하에 근접항행중인 선박간의 안전조선(安全操船)에 관한 연구)

  • Lee, Chun-Ki;Yoon, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.77-78
    • /
    • 2007
  • The aim if the present research is to develop a guideline if a safe conducting distance according to separated distance and velocity if the two vessels to navigate safely in restricted waterways. The authors studied the hydrodynamic forces between two vessels running closely and calculated safe conducting distances according to separated distances and speeds if the vessels under the condition if wind and strong current.

  • PDF

Visualization of Flow Fields Around a Flapped Rudder (플랩이 부착된 타 주위 유동장의 가시화)

  • Kim, Seong-Dong;Kim, Jin-Gu;Lee, Gyoung-Woo;Choi, Min-Seon;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.615-620
    • /
    • 2000
  • Manoeuvrability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship manoeuvring characteristics, especially at the preliminary design stage. Recently, in order to improve manoeuvrability of ships, High-lift devices could be applied to design of rudder at design stage. Now, among the them, we carried out the flow visualization and investigation of flow field around a flapped rudder(trailing-edge flap). A trailing-edge flap is simply a portion of the trailing-edge section of airfoil that is hinged and which can be deflected upward or downward. Flow visualization results of flap defection shown as follow Photos including main body and flap defection.

  • PDF

Experimental Study on Influences of Rudder on Maneuvering Derivatives (선박의 조종성 미계수에 미치는 타의 영향에 관한 실험적 연구)

  • 최명식;윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.3
    • /
    • pp.11-18
    • /
    • 1994
  • In the present trends at which vessels would be supersizedly designed for adapting special cargoes in order for effective controls of logistics in marine transportation, it brings poor manoeuvrability of ships and makes environmental or economical loss seriously due to accidents of a large scale at sea. International Maritime Organization adopted manoeuvring standards and also recommended manoeuvring booklets for ship operators recently. We attempted to find variation of hydrodynamic derivatives when a bare hull was fitted with propeller and rudder, or propeller only by captive model test in the circulating water channel. On comparing experimental results with theoretical values derived from equations, almost same tenden-cies were found at hull-propeller-rudder and hull-propeller situations. Interactions with rudder displayed well at large drift angles.

  • PDF

A Simulator Study on Yaw-checking and Coursekeeping Ability in IMO's Ship Manoeuvrability Standards

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.26-36
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship rnanoeuvrability standards is reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMO criteria for yaw-checking and course-keeping ability are discussed and new criteria are proposed.