• Title/Summary/Keyword: Ship domain

Search Result 236, Processing Time 0.022 seconds

Analysis of Influence by soil water-characteristic curve and permeability-suction relationship for the water flow in unsaturated soil (함수비 특성곡선과 투수계수 특성곡선이 불포화토내에서의 물의 흐름에 미치는 영향분석)

  • Kim, Suk-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.119-125
    • /
    • 2003
  • Water flow in unsaturated soils is affected by two mathematical equations called soil water-characteristic curve and permeability-suction relationship. Soil water-characteristic curve is an equation showing volumetric water content-suction relationship. Many researchers have presented equations for the relationships. This paper illustrates the importance of correctly determining the two relationships when analyzing unsaturated water flows. Results from two methods, Gardner (1958) and Fredlund et al. (1994), are used for comparison purposes. Numerical simulations of water flow by finite element method are performed using the two methods. The results by the numerical simulations are compared with the field data which was obtained from time-domain reflectometry (TDR) probes in Delaware County, Ohio. This data was obtained by the Seasonal Instrumentation Program which is included as a part of the Strategic Highway Research Program (SHRP).

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

A Study on the Low-frequency Active Echo Reduction Technology for Reducing Underwater Target Echo Signal (수중 표적 신호 방해를 위한 저주파 능동 반향음 감소 기술 연구)

  • Kim, Jaepil;Ji, Youna;Park, Young-cheol;Noh, Eunghwy;Ohm, Won-Suk;Choi, Yonggyu;Kim, Daeup;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Acoustic tiles are typically installed on the surface of pressure vessels in submarines to minimize echoes based on the ship's own noise and active sonar. In this study, we studied low frequency active echo reduction techniques to reduce underwater target echo signals. Active control algorithms using tile type projectors and FxLMS logic have been developed and the projectors have been installed in the assumed hull structure. The effectiveness of projectors and control algorithms has been evaluated in time and frequency domain analysis through experiments in the tank.

Experiment and Simulation Study on Performance Evaluation and Design of Fin-Stabilizer (핀 안정기 설계와 성능평가를 위한 모형시험과 시뮬레이션 연구)

  • Cho Seok-Kyu;Hong Sa-Young;Jang Taek-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • Recently, very large container ships are emerging as shipment of containers is expected to rapidly increase near future. A possibility of roll resonant motion in a seaway is expected to noticeably increase for large container ships of which capacity ranges 8,000 to 15,000 TEU due to relatively wide breadth and shallow draft comparing to conventional container ships. In this paper, a design and performance evaluation of a fin stabilizer for a 9,000 TEU container ship is carried out. The weak opposed control concept is adopted for the design. Time domain simulations and model tests are performed for performance evaluation. The design prediction, the model tests and the simulations show generally good agreements.

Development of Simplified Formulae for Added Mass of a 2-D Floating Body with a Semi-Circle Section in a Finite Water Depth (유한 수심에서 반원형 부유체의 부가질량계수 약산식 개발)

  • Koo, Weoncheol;Kim, Jun-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-84
    • /
    • 2013
  • This study is to develop the simplified formulae for added mass coefficient of a 2-D floating body with a semi-circle section in a finite water depth. The semi-circle floating body may represent a simplified midship section transformed by Lewis form, which can be used for the ship motion analysis by strip theory. Since the added mass coefficient varies with motion frequencies and sea bottom effect, the correction factor representing the effect of water depth and frequencies is developed for accurate prediction of added mass. Using a two-dimensional numerical wave tank (NWT) technique based on the boundary element method (BEM) including sea bottom boundary the reference values of added mass are calculated to develop the correction factor. For verification and effectiveness of the formulae, the predicted added mass coefficients for various frequencies and water depth ratios are compared with the calculated values from NWT technique.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm (DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정)

  • 장덕홍;박홍배;정문섭;김인수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

A Representation of Product Model for the Piping System Based on the Object_Oriented Paradigm (객체지향기술을 이용한 배관시스템 모델의 표현)

  • Jong-Kap Lee;No-Sang Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.19-30
    • /
    • 1994
  • The modeling of a product data is becomming more and more important in engineering environment, especially for the development of CAD/CAM system as a basis of computer integrated manufacturing system. Model is a formalized representation of the real world, and modeling is the task to identify, abstract, and formalize the product information into an unambiguous representation. In this study, the piping system, one of typical product of ship outfitting system, is modeled. The STEP idea is followed to provide a common mechanism to represent the product information throughout the life-cycle, and the object oriented paradigm is used in the analysis and design of the model. The definitions given within this model are independent of the specific application domain so that the same methodology can be used for other purpose.

  • PDF