• Title/Summary/Keyword: Ship calculation

Search Result 543, Processing Time 0.024 seconds

A quantitative methodology for evaluating the ship stability using the index for marine ship intact stability assessment model

  • IM, Nam-Kyun;CHOE, Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.246-259
    • /
    • 2021
  • IMO stability regulations include various stability parameters such as GM values. To assess the stability of the ships, we should check all stability parameters of the IMO requirements. However, since this process is complex, a more convenient way to evaluate stability performance is required. In this research, the index for marine ship intact stability assessment (IMSISA) model was developed to solve these problems. The IMSISA model consists of a stability index calculation module and a stability assessment module. In the stability index calculation module, ten stability parameters, including GM, were used to develop the stability index, which has the advantage of being able to quantify the ship stability. The stability assessment module uses the stability index value to determine the stability status of the ship and provides the captain with stability management guidelines. To verify the proposed model, the basic stability calculations were performed for two model ships in 32 loading situations. The proposed model was found to provide better performance in the stability assessment than the previous study. By applying the IMSISA model to the ships, the captain can assess the ship stability more quantitatively and efficiently.

Development of a Ship Calculation Program Based On the Geometric Model (형상모델 기반 선박계산 전산프로그램 개발)

  • Sang-Su Park;Kyu-Yeul Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, a ship calculation program is developed, which prof[nuts hydrostatics and volume calculation intact and damage stability and hull variation. Hull form and compartment geometry are expressed with NURBS curve wire-frame model. Hydrostatics and volume calculation are performed directly with the intersection method between section geometry and 3D planar surface. Equilibrium ship position is calculated with hydrostatic equilibrium equation which is linearized by 1st order Taylor series expansion sequentially. The developed program shows more accurate results and easy uses than the latter.

  • PDF

On the Mathematical Model for Estimating Manoeuvring Performance of Ships (선박의 조종성능평가를 위한 수학모델에 관한 연구)

  • 손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.57-73
    • /
    • 1989
  • This paper presents a practical method to predict the characteristics of ship manoeuvring motions. A attempt is made to calculate the manoeuvring motions utilizing principal particulars of ship hull, properller and rudder as basic input data. The mathematical models, which describe the ship manoeuvring motions, are developed on the basis of MMG(5), Inoue(17), Hooft(18) and so on. Calcuations of manoeuvring motions for three kinds of typical characteristics, namely turning motion, zig-zag manoeuvre response and steady turning performance, are carried out. In order to examine the validity of the calculation method of this paper, simulations are run for seven merchant ships employed by Inoue(4). The computed results by present method are compared with full scale trials and Inoue's calculations(4). It can be concluded that the calculation method proposed in this paper is useful and pwoerful for prediction of characteristics of ship manoeuvring motions at the initial design phase or the application study on manoeuvring motions.

  • PDF

Computer Program for Preliminary Ship Design-PROCAL (선박(船舶)의 초기설계(初期設計)를 위한 전산프로그램 PROCAL)

  • Soon-Hung,Han
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 1983
  • Korea Institute of Machinery and Metals(KIMM) purchased a computer program for preliminary ship design from the ship Research Institute of Norway(NSFI). The program PROCAL(PROject CALculation) is described with other programs developed by NSFI such as SHIPMODEL, FLEET, SHIPSHAPE, SKRIN.

  • PDF

Development of an Optimal Compartment Design System of Naval Ships Using Compartment Modeling and Ship Calculation Modules (구획 모델링 및 선박 계산 모듈을 이용한 함정의 최적 구획 배치 시스템 개발)

  • Roh, Myung-Il;Lee, Sang-Uk;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Recently, compartment design of a naval ship for efficiently utilizing the limited spaces has become more important. However, the compartment design of the naval ship was not optimized like that of a commercial ship because of a number of design requirements. Thus, the task is being manually performed using the data of parent ships and designers' experiences. To improve this procedure, an optimal compartment design system, which can generate better compartment design result with the satisfaction of various design requirements, is developed in this study. Finally, to evaluate of the applicability of the developed system, it is applied to the compartment design of a 9,000ton missile destroyer(DDG). The result shows that the developed system can yield better result than original design.

640TEU 컨테이너서느이 묘박설비와 외력크기의 비교에 대한 고찰

  • 강봉석;정효진;오지설;박은아;박인성;김세원
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.10b
    • /
    • pp.151-158
    • /
    • 2000
  • 1. Instruction. 2. Investigation about holding power in Da san mooring area. 3. Weather condition in Da san anchorge. 4. Calculation of Externer power. a. Calculation of Container ship' holding power in mooring. 6. Comparison of Container ship' External power and holding power. 7. Conclusion.

  • PDF

On the Design Impact Pressure in the Rules and Regulations of ISO and Classification Societies (선급 및 ISO에 나타난 설계충격 하중에 관하여)

  • Lee, June
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.31
    • /
    • pp.60-70
    • /
    • 2011
  • The slamming impact pressures at the bottom area of the Open60' are evaluated by the rules and regulations of various organizations - ISO and classification societies. The enhanced performance of the modern racing yacht in terms of speed which achieves well over 20 knots needs special consideration. The calculated design impact pressures are compared a experimental results. Severe difference can be found in these calculation results but the final conclusion shall be obtained after the scantling calculation under the evaluated design impact pressure so far.

  • PDF

Note on a Simplified Method for Calculation of Stability (선박복원력(船舶復原力)의 간이계산법(簡易計算法))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.15 no.1
    • /
    • pp.7-9
    • /
    • 1978
  • In this calculation of statical stability of a ship, mechanical integrator was used most popularly and the direct calculation method such as a Barn's wedge method was also adopted in some cases. Both of the above method was developed for manual calculation which include mechanical integration or drafting procedure on body plan. Therefore, the computerization of stability calculation by the above method is very difficult. In this paper a simplified method for stability calculation is suggested, with based on hydrostatic data and immerged wedged characteristics.

  • PDF

Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator (선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화)

  • Yeo, Dong-Jin;Cha, Moo-Hyun;Mun, Du-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

A Study on Comparison and Analysis of Motion Sickness Inquiry with MSI Calculation for Training Ship Kaya (실습선 가야호의 멀미도 조사와 MSI 계산의 비교 분석에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Kim, In-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • In this paper, for better boarding performance and pleasant boarding sensitivity of the ship, comparison and analysis was performed of motion sickness questionnaire with MSI(Motion Sickness Incidence) calculation based on ship motion theory(Strip Method) due to sea condition, incident angle in main sail way, economic speed, and calculation position of the training ship Kaya of Pukyong National University. On theses works, the rougher sea conditions became, the higher total motion sickness rate was occurred. The weights of vertical acceleration and the rates of MSI were higher at the bridge and the accommodation, which were located farther from the center of gravity of the ship. And effects of the vertical acceleration of the ship were increased in rolling then in head sea. In comparison between motion sickness questionnaire with MSI calculation, when the vertical acceleration increased, the motion sickness rate increased. The location to increase vertical acceleration and the location to cause motion sickness were agreed.