• Title/Summary/Keyword: Ship Waiting Ratio

Search Result 8, Processing Time 0.026 seconds

A Study on the Gap between Theoretical and Actual Ship Waiting Ratio of Container Terminals: The Case of a Terminal in Busan New Port (컨테이너 터미널의 이론적 대기율과 실제 대기율 비교에 관한 연구: 부산항 신항 A 터미널을 대상으로)

  • Lee, Jung-Hun;Park, Nam-Kyu
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.2
    • /
    • pp.69-82
    • /
    • 2018
  • The number of ships serviced at the container terminals in Busan is increasing by 2.9% per year. In spite of the increase in calling ships, there are no official records of waiting rate by the port authority. This study attempts to compare the theoretical ship waiting ratio and actual ship waiting ratio. The actual ship waiting ratio of container terminals is acquired from the 2014 to 2016 data of PORT-MIS and Terminal Operating System (TOS). Furthermore, methods and procedures to measure the actual ship's waiting rate of container terminal are proposed for ongoing measurement. In drawing the theoretical ship waiting ratio, the queuing theory is applied after deploying the ship arrival probability distribution and ship service probability distribution by the Chi Square method. As a result, the total number of ships waiting in a terminal for three years was 587, the average monthly service time and the average waiting time was 13.8 hours and 17.1 hours, respectively, and the monthly number of waiting ships was 16.3. Meanwhile, according to the queuing theory with multi servers, the ship waiting ratio is 31.1% on a 70% berth occupancy ratio. The reason behind the huge gap is the congested sailing in the peak days of the week, such as Sunday, Tuesday, and Wednesday. In addition, the number of waiting ships recorded on Sundays was twice as much as the average number of waiting ships.

Software Development for Optimal Productivity and Service Level Management in Ports (항만에서 최적 생산성 및 서비스 수준 관리를 위한 소프트웨어 개발)

  • Park, Sang-Kook
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.137-148
    • /
    • 2017
  • Port service level is a metric of competitiveness among ports for the operating/managing bodies such as the terminal operation company (TOC), Port Authority, or the government, and is used as an important indicator for shipping companies and freight haulers when selecting a port. Considering the importance of metrics, we developed software to objectively define and manage six important service indicators exclusive to container and bulk terminals including: berth occupancy rate, ship's waiting ratio, berth throughput, number of berths, average number of vessels waiting, and average waiting time. We computed the six service indicators utilizing berth 1 through berth 5 in the container terminals and berth 1 through berth 4 in the bulk terminals. The software model allows easy computation of expected ship's waiting ratio over berth occupancy rate, berth throughput, counts of berth, average number of vessels waiting and average waiting time. Further, the software allows prediction of yearly throughput by utilizing a ship's waiting ratio and other productivity indicators and making calculations based on arrival patterns of ship traffic. As a result, a TOC is able to make strategic decisions on the trade-offs in the optimal operating level of the facility with better predictors of the service factors (ship's waiting ratio) and productivity factors (yearly throughput). Successful implementation of the software would attract more shipping companies and shippers and maximize TOC profits.

An Analysis of Ship's Waiting Ratio in the Korean Seaports (국내 항만의 선박 대기율 실증 분석 연구)

  • Kim, Eun-Soo;Kim, Geun-Sub
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Port congestion has been recognized as one of the critical factors for port service competitiveness and port selection criteria. However, congestion ratio, the congestion index currently used by Korea, plays a very limited role in shipping companies' and shippers' selection of port and port authorities' decision making regarding port management and development. This is mainly due to the fact that this ratio is only calculated as the ratio of the number of vessels by each port. Therefore, this study aims to measure service level related to vessel entry and departure in Korea ports by evaluating waiting ratio(WR) according to terminals and vessel types. The results demonstrate that the waiting ratio of containerships and non-containerships is less than 4% and 15% respectively, which satisfies the reasonable level suggested by the UNCTAD and OECD. Port of Pohang is revealed to have the highest WR of 57% and among the terminals, No. 1 Terminal of the Shinhang area has the highest WR. In terms of ship types, WR of Steel Product Carrier is highest, followed by General Cargo Ship and Bulk Carrier at the Pohang Shinhang area. In addition to WR, berth occupancy ratio as well as the number and time of waiting vessels can be utilized to evaluate service level by ports and terminals from port users' perspective, and furthermore, to improve the port management and development policy for port managers or authorities.

A Study on the Optimal Service Level of Exclusive Container Terminals (컨테이너 전용부두의 최적 서비스 수준에 관한 연구)

  • Park, Sang-Kook
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.2
    • /
    • pp.137-156
    • /
    • 2016
  • This study analyzes the optimal service levels of exclusive container terminals in terms of the optimal berth occupancy rate and the ships' waiting ratios, based on the number of berths. We develop a simulation model using berth throughput data from pier P, Busan New Port, a representative port in Korea, and apply the simulation results to different numbers of berths. In addition to the above results, we analyze the financial data and costs of delayed ships and delayed cargoes for the past three years from the viewpoints of the terminal operation company (TOC), shipping companies, and shippers to identify the optimal service level for berth occupancy rates that generate the highest net profit. The results show that the optimal levels in the container terminal are a 63.4% berth occupancy rate and 10.6% ship waiting ratio in berth 4,66.0% and 9.6% in berth 5, and 69.0% and 8.5% in berth 6. However, the results of the 2013 study by the Ministry of Maritime Affairs and Fisheries showed significantly different optimal service levels: a 57.1% berth occupancy rate and 7.4% ship waiting ratio in berth 4; 63.4% and 6.6% in berth 5; and 66.6% and 5.6% in berth 6. This suggests that optimal service level could change depending on when the analysis is performed. In other words, factors affecting the optimal service levels include exchange rates, revenue, cost per TEU, inventory cost per TEU, and the oil price. Thus, optimal service levels can never be fixed. Therefore, the optimal service levels for container terminals need to be able to change relatively quickly, depending on factors such as fluctuations in the economy, the oil price, and exchange rates.

A Study on RFID Based Productivity Improvement of Container Terminals (RFID 기술을 활용한 컨테이너 터미널의 생산성 개선 방안 연구)

  • Park, Doo-Jin;Choi, Young-Bok;Kim, Hyun;Nam, Ki-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1071-1074
    • /
    • 2005
  • This paper suggests how can we guarantee terminal quality of service like ship waiting time ratio and ship residing time applying RFID(Radio Frequence IDentification) technology, raising up rapidly as a fundamental solution of new growing industry, to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time resulted from productivity improvement of G/C(Gantry Crane) and YT(Yard Tract) etc as applying RFID technology to terminal operation.

  • PDF

A Study on RFID Based Biz-Model for QoS Guarantee for Container Terminals (RFID를 활용한 컨테이너터미널의 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Park Jin-Hee;Kim Hyun;Nam Ki-Chan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.211-217
    • /
    • 2006
  • In recent years, the pileup of world ports is deepening as time goes by due to China effect and continuous increase of world trade volume. The shipping companies try to reduce their shipping cost by using mega vessels in the ports. Shipping companies consider most of the ships turnaround time as a critical factor when selecting a calling port for reducing cost. This paper will suggest how we can guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence IDentification) technology, raising up rapidly as a fundamental solution of new growing industry to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time and result from productivity improvement of Twin-lift G/C(Gantry Crane} as applying RFID technology to terminal operation. The purpose of this paper suggests that the new business model of U-Port which port QoS can be guaranteed using RFID based RTLS technology.

A Study on RFID Based QoS Guarantee between O/D Container terminals for Biz-Model (RFID을 활용한 기종점 컨테이너 터미널간 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Kim Hyun;Nam Ki-Chan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.303-309
    • /
    • 2005
  • This paper will suggest how can we guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence Identification) technology, raising up rapidly as a fundamental solution of new growing industry, to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time resulted from productivity improvement of Twinlift G/C(Gantry Crane) and Y/T(Yard Tract) etc as applying RFID technology to terminal operation. The purpose of this paper is suggesting of new business model of u-Port that port QoS can be guaranteed from mutual agreement of each terminals RFID technology applied and focusing on the implementation plan.

  • PDF

SANET-CC : Zone IP Allocation Protocol for Offshore Networks (SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜)

  • Bae, Kyoung Yul;Cho, Moon Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.87-109
    • /
    • 2020
  • Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.