• Title/Summary/Keyword: Ship Tracking System

Search Result 133, Processing Time 0.027 seconds

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

A Study on the DBS Receive Tracking Antenna Apparatus on a Ship by the Az/El Mount (Az/El 마운트에 의한 선박용 DBS 수신추적안테나 장치에 관한 연구)

  • 최조천;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • DBS offers actual services to mass-media and communication system of very broad region in information society. Especially, the DBS is the only system to access TV broadcasting service on a sailing ship. But the ship's DBS receiver is required a complex antenna tracking system because ships are under complex moving such as pitch, roll, and yaw etc. This study is motivated to develop a tracking antenna system to receive the koreasat on small silo ship. Therefore, this system is researched to small size, light weight, simple operation, and low cost of the product. The mount structure have been a compact size and easy operation to the Az/El 2-axis type which is operated by step motor. And it is very useful on a ship in the around sea of korean peninsula. The antenna has a plate type of micro-strip array, and is a domestic production. The vibration sensor is selected to gyro sensor of ultra-sonic rate type for ship's moving control. Tracking method is used the step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Tracking test is operated by the ship's moving simulator, we examined the actual receiving state on sailing shipboard in the near sea of korean peninsular.

  • PDF

A Ship Control System in the Berthing Phase

  • Bui, Van Phuoc;Kim, Young-Bok;Choi, Kwang-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.349-354
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and performance robustness with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

  • PDF

A study on the tracking antenna system for DBS receive on a ship (선박용 DBS수신 추적안테나 시스템의 구현)

  • 최조천;양규식;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2236-2245
    • /
    • 1997
  • The DBS system is being highlighted as actual area for the information societics. Specially, the DBS have been proposed very useful system to access the broading service in more widely sea. But the antenna tracking system for maritime DBS receiving is requried complicated control system because of the those complex motion represented pitching, rolling and yowing etc. Our resesrch target is a development of tracking system to the KOREASEA(MUGUNGWHA-1,2) for the applicated small size shipping. So our development focus was concentrated the two development direction. The first focus was represented low-cost system for popularization of small-size shipping around sea of the Korea peninsula. The second focus was an adaptive possibilities with domestic eqdupiment which was developed satellite receiving for KOREASAT. The anntenna mount is designed a compact size and easy operation use to the Az/El 2-axis type which is operated by step motor. And this mount type is very useful on a ship in the near sea of Korea peninsula. Basic tracking method is used th step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Control part is consists of converter, countertime, VCO, micro-computer and it's software. Testing the operation by the ship's moving simulator, and algorithm is designed tracking and moving compensation by receiving state.

  • PDF

A Study on the Implementation of the Stabilizer of Sun Tracking System for a ship (선박용 태양추적 시스템을 위한 스데빌라이저 구현에 관한 연구)

  • 김태훈;김종화;안정훈;이병결
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.163-163
    • /
    • 2000
  • The tracking system on the moving vehicle is made up of two parts. One is a stabilizer which is flatting the system against the moving vehicle, the other is a tracker which is tracking the target. This makes use of the geometric information of the tracking target and that utilizes the dynamic information of the moving vehicle equipping the tracking system. Especially the stabilizer is very important for an ocean vehicle affected by wave, wind, and current. In this paper, the stabilizer of sun tracking system for a ship is developed.

  • PDF

Intelligent Kalman Filter for Tracking an Anti-Ship Missile

  • Lee, Bum-Jik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.563-566
    • /
    • 2004
  • An intelligent Kalman filter (IKF) is proposed for tracking an incoming anti-ship missile. In the proposed IKF, the unknown target acceleration is regarded as an additive process noise. When the target maneuver is occurred, the residual of the Kalman filter increases in proportion to its magnitude. From this fact, the overall process noise variance can be approximated from the filter residual and its variation at every sampling time. A fuzzy system is utilized to approximate this valiance, and the genetic algorithm (GA) is applied to optimize the fuzzy system. In computer simulations, the tracking performance of the proposed IKF is compared with those of conventional maneuvering target tracking methods.

  • PDF

Design of Automatic Ship Maneuvering Control System (선박 자동 운항 제어기의 설계)

  • Kwak Moon Kyu;Suh Sang-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.90-101
    • /
    • 1999
  • This paper is concerned with the design of automatic ship maneuvering system including automatic path tracking controller and automatic berthing controller. The optimal control technique is employed to design the automatic path tracking controller, which is based on the linearized equations of ship motion. The numerical example shows that the automatic path tracking controller is capable of tracking the line between way points which are determined by pilot a priori. The decentralized control technique is employed to design the automatic berthing controller. In addition to the automatic path tracking controller, the fuzzy logic controller is used to control the forward speed. The numerical example shows that the automatic berthing controller can be successfully implemented.

  • PDF

Development of Engagement Simulation Program between ASM with IIR Seeker and Defense System (적외선 영상탐색기를 탑재한 대함유도탄-함정방어체계 교전모의 프로그램 개발)

  • Park, Sang-Sup;Kim, Do-Wan;Choi, Kee-Young;Kim, Jung-Ho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.373-382
    • /
    • 2013
  • In this paper, in order to analyze the performance of a decoy system for ship defense against an anti-ship missile(ASM) with an infrared image(IIR) seeker, the modeling and engagement simulation program is introduced. The IIR seeker on the ASM detects the infrared signal of ship from a distance and approaches the ship based on proportional navigation guidance(PNG) or impact angle control guidance(IACG). Hence the guidance performance of the ASM is basically depend on the target tracking algorithm of the seeker as well as the infrared signal of the ship. Using the developed program, we can investigate the effect of the ship decoy system such as flares and surface cooling system of the ship with respect to various kinds of tracking algorithms of the IIR seeker of the ASM.