• Title/Summary/Keyword: Ship Resistance

Search Result 599, Processing Time 0.025 seconds

A Study on the Development of Liner Ship Form by Streamline Tracing Method (유선추적법(流線追跡法)에 의(依)한 Liner 선형(船型)의 개량(改良)(속)(續))

  • Cho, Kyu-Jong;Hong, Sung-Wan;Kim, Sang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 1971
  • The object of this study is to determine theoretical ship form which minimises wave making resistance under given conditions and developes theoretical ship form planing. By employing the streamline tracing method 1967's Korean Standard Ship Form of 10,000 G.T. linear has been reformed and tested at towing tank of Inha Institute of Technology. The design process and the reformed ship forms had been reported already in reference[4]. In this paper, resistance performance is experimentally observed with three models(original, theoretical, and reformed form) of 2m long in the towing tank, and total resistance of theoretical and reformed ship forms are decreased by 24.9% and 19.7% and wave making resistance by 66.4% and 47.7% compare to original ship form respectively.

  • PDF

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

Added Resistance and Seakeeping Ability of a Medium-sized Passenger Ship with Gooseneck Bulb (거위목 벌브 형상을 적용한 중형 여객선의 부가저항 및 내항성능)

  • Yu, Jin-Won;Lee, Young-Gill;Ha, Youn-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.290-297
    • /
    • 2015
  • This research is focusing on the added resistance and seakeeping ability of the designed passenger ship with gooseneck bulb(Designed hull) which provide the improvement of resistance performance under calm water condition. By comparing the added resistances and seakeeping abilities of the reference hull and the designed hull form with gooseneck bulb, it is confirmed that there is little difference in the operational comfort and the reduction of ship speed. As a result, the applied gooseneck bulb in this study is verified for the applicability to medium-sized passenger ships with a good resistance performance.

A Research on the Added Resistance Due to Weather at Sea (해상에서의 기상상태에 기인된 부가저항에 관한 고찰)

  • ;Townsin, R. L.
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 1993
  • Standard values in graphic porms are presented for the ratio of added wave resistance to the sun of added wave and wind resistances in head sea for three ship types, tanker, container ship and passenger ship. The effect of ship length on the ratio defined above is investigated for the three ship types. Obique sea added resistance is determined using wave direction reduction factor. The factor is obtained from model test results and cubic spline interpolation technique.

  • PDF

Experimental and numerical study on ice resistance for icebreaking vessels

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.626-639
    • /
    • 2015
  • Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.

Research on total resistance of ice-going ship for different floe ice distributions based on virtual mass method

  • Guo, Wei;Zhao, Qiao-sheng;Tian, Yu-kui;Zhang, Wan-chao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.957-966
    • /
    • 2020
  • This paper presents the virtual mass method to implement the prediction of total resistance for ice-going ship in floe ice region based on the combined method of CFD and DEM. Two ways of floe ice distribution are adopted for the analysis and comparison. The synthetic ice model test has been conducted to determine the optimal virtual mass coefficients for the two different floe ice distributions. Moreover, the further verification and prediction are developed in different ice conditions. The results show that, the fixed and random distributions in numerical method can simulate the interaction of ship and ice vividly, the trend of total resistance varying with the speed and ice concentration obtained by the numerical simulation is consistent with the model test. The random distribution of floe ice has higher similarity and better accuracy than fixed distribution.

Effects of Trim on Resistance Performance of a Ship (선박의 트림 자세가 저항 성능에 미치는 영향)

  • Park, Dong Woo;Lee, Sang Bong;Chung, Sung Seob;Seo, Heung Won;Kwon, Jae-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.88-94
    • /
    • 2013
  • The primary objective of the current work is to obviously analyze regarding effects of trim conditions of a ship on resistance performance using model test and CFD. Model tests at a towing tank are conducted to investigate resistance for trim conditions at the given same displacement. Measured resistance shows small but distinct differences according to trim conditions. However, these differences are difficult to be clarified by measured physical quantities and wave pattern analysis from model tests. CFD is employed for the assessment of resistance performance according to trim conditions. The flow computation is conducted considering free surface and dynamic trim using a commercial CFD code (STAR-CCM+). The initiative of the present work is to systematically demonstrate pressure resistance acting on each region of divided finite zones of ship surface along the length and draught direction of surface when pressure distribution on the ship is interpreted. Also, a standard to assess the pressure resistance applied on the divided regions of a ship is established.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

A Feasibility Review for an Uneven Baseline Basis Minimal Ballast Ship

  • Kang, Hee Jin;Kim, Kwang-Soo;Choi, Jin;Lee, Yeong-Yeon;Ahn, Haeseong;Yim, Geun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Although there are many kinds of advanced ballast water management systems, pioneering studies for ballast-water free ship and minimal ballast water ship concepts are in progress. In this study, the existing alternatives of ballast water are reviewed and a new design concept is studied on the basis of the existing bulk carrier hull form. To develop a new design alternative which has minimal ballast for ballast water discharge free operation, the new concept should have technical feasibilities that are related to the role of the ballast water, berth access, loading constraints, etc. For this purpose, a simplified systems engineering basis design approach is adopted using a business model as the system analysis and control tool. To check the performance feasibility of the new concept, ship resistance performance is reviewed based on a model scale ship resistance performance analysis.

Hydrodynamics prediction of a ship in static and dynamic states

  • Du, P.;Ouahsine, A.;Sergent, P.
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.163-176
    • /
    • 2018
  • The ship hydrodynamics in static and dynamic states were investigated using 3-dimensional numerical simulations. The static case simulated a fixed ship, while the dynamic case considered a ship with free sinkage and trim using the mesh morphing technique. High speed was found to increase the wave elevation around the ship. Compared with the static case, the dynamic case seemed to generate higher waves near the bow and after the stern. The frictional resistance was found be to more dominant. However, the pressure resistance became gradually important with the increase of the ship speed. The trim and sinkage were also analyzed to characterize the ship hydrodynamics in the dynamic state.