• Title/Summary/Keyword: Ship Hull Vibration

Search Result 93, Processing Time 0.024 seconds

A Study on the Longitudinal Hull Girder Vibration of a 73,000 Deadweight Bulk Carrier (73,000톤 산적화물선의 선체거더 종진동 현상분석)

  • Jong-Gug Bae;Kyoon-Yang Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-107
    • /
    • 1995
  • Longitudinal hull girder vibration has not been occurred severely since 1960's. However, recent low speed diesel driven ships equipped with overcritical shafting system, can be excited heavily in longitudinal direction by shaft axial farce coupled with torsional vibration. In this study the characteristics of longitudinal hull girder vibration of a 73,000 deadweight bulk carrier were investigated through onboard measurement, exciter test, and 3-D FEM analysis. Results showed that the longitudinal hullgirder vibration may occur in the ship which is not set up the barred speed range in engine operation. Moreover, this vibration occurs. only during the low speed voyage in harbour depending upon the ship loading condition.

  • PDF

A Study on Dynamic Strength Analysis of Submarine Considering Underwater Explosion (내충격 성능을 고려한 수중함 동적 강도 설계에 관한 연구)

  • Son, Sung-Wan;Choi, Su-Hyun;Kim, Kuk-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1185-1191
    • /
    • 2000
  • In general, the strength of hull structures can be estimated from stress evaluation considering static and hydro-dynamic load due to sea-wave. However, war ships such as submarine, have frequently experienced the underwater explosion and local structures of ship as well as hull girder can be damaged by the dynamic response excited from underwater non-contact explosion. When explosion happens at underwater, shock wave is radiated In early short time, then gas bubbles are generated, and expansion and contraction are repeated as they float to the surface. The shock wave causes the damage of equipment and its supporting structures, on the other hand, the hull girder strength can be lost by resonance between bubble pulsation and lowest ship natural vibration period. In this paper, the hydro-Impulse force due to bubble was calculated. Based on these results the hull girder strength of submarine was estimated from transient response analysis by using NASTRAN. Also, shock analysis for some equipment supporting structures was carried out by using DDAM. In order to evaluate the strength of these local structures due to shock wave.

  • PDF

Transfer Function of Structure-borne Noise to Underwater Radiated Noise (고체음의 수중방사소음 전달함수)

  • 김재승;김현실;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.138-142
    • /
    • 2001
  • A comparison between theoretical and measured transfer function, which relates structure-borne noise source level to underwater radiated noise, of a naval ship is presented in this study. Transfer functions are obtained by dividing far field underwater noise by the value of structure borne noise source levels below machinery mounts. In prediction, statistical energy analysis of the whole ship structure is used to get vibration levels of wetted hull plates below water line. Then, far field radiated noise is calculated by summing up contributions from each plates using vibration levels and radiation efficiencies. And 1/3-octave band underwater sound pressure at the distance of 1 m away from the hull were measured to get experimental transfer functions. The two transfer functions are compared to show resonable agreements in spite of the subtle physical differences between each other.

  • PDF

Study on the Structural Reinforcements for the Transverse Vibration of Ship's Main Engine (선박 주기관 횡진동 구조보강 검토)

  • Im, Hong-Il;Shin, Sang-Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.55-59
    • /
    • 2013
  • Transverse vibrations of ship's aft end and deckhouse among the various modes of hull structures are induced mainly by transverse exciting forces and moments of main engine such as ${\times}$ and h-moment. Avoidance of resonance should be made in a intial design stage in case there is a prediction for resonance between main engine and transverse modes of deckhouse. This study shows a case of change in type of main engine from 12 cylinders to 10 without modification of hull structures in engine room requested by a shipowner of 8,600 TEU class container carrier and proposes a guide to the effective ways of structural arrangement for avoiding resonance between transverse exciting force and surrounding structures of main engine in engine room through case studies.

  • PDF

Estimation of the Underwater Radiated Noise of a Naval Vessel Using Hull Vibration (선체진동을 이용한 함정의 수중방사소음 예측)

  • Han, Hyung-Suk;Lee, Kyung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.394-400
    • /
    • 2013
  • Underwater radiated noise is one of the important performances related to stealth of the naval vessel. However, the evaluation can't be performed frequently due to the cost. Therefore, the estimation method of the underwater radiated noise with average hull vibration is suggested in this paper assuming that the hull of the ship is infinite plate which consists of various unit plates. Through the experiment, the estimated noise is verified from the comparison to the measured data. In addition the difference of underwater radiated noise according to the operating equipments is estimated with measured vibration velocity.

Reduction of Fire Main Pipe System's Vibration Using Back Flow Prevent Globe Valve (역류방지 글로브 밸브를 이용한 소화 주관계의 진동개선)

  • Park, Mi-You;Han, Hyung-Suk;Lee, Seuk-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.518-523
    • /
    • 2009
  • Main source of URN(Underwater Radiated Noise) which is related to the ship's survivability is divided into two groups. Cavitation is main source of URN when the speed of ship is upper than CIS(Cavitation Inception Speed). But when the speed of ship is lower than CIS, main source of URN is structure-borne noise on the hull which is originated from propulsion system, pump system or transmitted vibration of pipe system. In this paper, to reduce the vibration of discharge pipe and valve system, back flow prevent globe valve and new rubber mount are applied to the ship. As the result of applying new valve and mount, the vibration is reduced drastically.

  • PDF

Reduction of Fire Main Pipe System's Vibration Using Back Flow Prevent Globe Valve (역류방지 글로브 밸브를 이용한 소화 주관계의 진동개선)

  • Park, Mi-You;Han, Hyung-Suk;Lee, Seuk-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.599-606
    • /
    • 2009
  • Main source of URN(underwater radiated noise) which is related to the ship's survivability is divided into two groups. Cavitation is the main source of URN when the speed of ship is upper than CIS(cavitation inception speed). But when the speed of ship is lower than CIS, the main source of URN is the structure-borne noise on the hull which is originated from propulsion system, pump system and trnasmitted vibration of the pipe system. In this paper, to reduce the vibration of discharge pipe and valve system, back flow prevent globe valve and new rubber mount are applied to the ship. As the result of applying new valve and mount, the vibration is reduced drastically.

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF

Boarding environment of training ship KAYA for the hull vibration (실습선 가야호의 선체진동에 대한 승선환경)

  • Kim, Min-Son;Shin, Hyeon-Ok;Kim, Min-Seok;Han, Jin-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.1
    • /
    • pp.46-55
    • /
    • 2009
  • To compare and evaluate the suitability and comfort levels of the environment on board a stern trawl training ship, KAYA(GT: 1737 tons, Pukyong National University), with the international standardization guide ISO 6954:2000(E), measurements of the hull vibration on accommodation areas and working areas of the training ship from July 8 to July 10, 2008 were completed upon KAYA's linear sea route. The vibrations along the z-axis were measured with the use of a 3-axis vibration level meter, which included a marine vibration card. Results show accelerations of the vibrations on the passenger's accommodation area to be 42.0-115.8(average: 78.0, standard deviation(SD): 21.0) mm/$s^2$, which is largely below the permissible upper limit, but 75 % of the observation points exceeded the permissible lower limit of 71.5 mm/$s^2$, indicating a comfortable environment. The accelerations of the vibration in a frequency of 10-24Hz lowering the visual performance were measured at 2.5-12.0(average: 7.6, SD: 3.1) mm/$s^2$. The crew s accommodation area experienced vibration accelerations of 42.9-82.3(average: 93.1, SD: 53.1) mm/$s^2$, which is generally below the permissible upper limit of 214.0 mm/$s^2$, and 62.5% of the observation points did not exceed the permissible lower limit of 107.0 mm/$s^2$, denoting a level of comfort. The acceleration of the vibration in a frequency of 10-24Hz were 4.7-28.3(average: 12.4, SD: 8.8) mm/$s^2$. On the crew s working area the accelerations were measured at 86.9-153.9(average 119.3, SD 18.0) mm/$s^2$. These values were generally below the permissible upper limit of 286.0 mm/$s^2$ and only 12.5% of the observation points did not exceed the permissible lower limit of 143.0 mm/$s^2$, the level at which a high level of comfort is maintained. The accelerations in frequency of 10-24Hz and 30Hz were 9.1-29.8 (average 13.8, SD= 4.5) mm/$s^2$ and 8.9-13.7 (average 11.8, SD 2.1) mm/$s^2$, respectively. In conclusion the boarding environment of the training ship was good in general although an improvement of the vibration condition partially needed on the crew s accommodation area near the engine room.

The characteristic analysis of noise and vibration in training ship (실습선의 소음과 진동 특성 해석)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1012-1013
    • /
    • 2006
  • Marine technology must advance to meet the needs of a wealthier and more demanding public while at the same time provide greater environmental protection. Pollution noise and vibration is the specific issue being discussed in this paper Noise is of course due to vibration from high speed engines driving generators, entilators, winch and other gear, while underwater noise pollution results from the propellers and the resistance produced by the hull of the ship moving through the water. Vibration is also a factor in potential damage to sensitive electronic gear and metal fatigue. The issue of noise pollution does not cease when a vessel enters her berth and the main engines shut down. There is still the matter of ventilation and other mechanical factors at work to maintain a comfortable, efficient environment. We measured the noise level and vibration displacement in the training ship A-Ra at underway and Berth. The authors analyzed the frequency of noise and maximum vibration displacement in the position.

  • PDF