• 제목/요약/키워드: Ship Hull

검색결과 1,258건 처리시간 0.022초

컨테이너선의 조파저항 감소 기술에 대한 연구 (Research on Wave-Making Resistance Reduction Technology for Container Ships)

  • 최희종
    • 한국항해항만학회지
    • /
    • 제48권4호
    • /
    • pp.249-260
    • /
    • 2024
  • 본 논문에서는 컨테이너선의 조파 저항을 효율적으로 감소시킬 수 있는 기술과 관련하여 연구한 내용을 정리하였다. 컨테이너선에 적용이 가능한 조파저항 저감 기술을 개발하고 실선 설계에 사용하기 위하여 최적화 알고리즘, 선체 형상 변경 알고리즘, 선박 성능 예측 알고리즘, 자동화 알고리즘 그리고 반복적 최적 설계 기법을 적용하여 선형 최적 설계를 수행할 수 있는 컴퓨터 프로그램을 개발하였다. 선형최적 설계에 있어서 중요한 요소인 설계 변수의 적절한 설정과 설계 변수의 하한과 상한을 효율적인 설정을 위하여 민감도 분석 알고리즘을 개발하여 선형 최적 설계에 적용하였다. 개발된 컴퓨터 프로그램의 신뢰성과 실선 적용성을 예측하기 위하여 전 세계적으로 다양한 연구가 진행된 컨테이너선인 KCS(KRISO Container Ship) 선박에 대한 선형 최적 설계를 수행하였다. KCS 선박의 설계 속도인 Fn=0.26에서 선형 최적 설계를 수행하였으며, 대상 선박인 KCS 선박의 선형과 선형 최적 설계의 결과로써 도출된 선박의 선형에 대한 수치해석을 수행하여 조파 저항, 파형 그리고 파고를 구하고 서로 비교하였다. 결론적으로, 최적 선박은 대상 선박과 비교하여 조파 저항이 80.60% 감소하였고, 배수량과 침수 표면적은 각각 1.54%, 1.21% 감소하는 것을 알 수 있었다.

KDX-II급 함정 수직발사대 선체 균열발생에 따른 보강방안 연구 (A Study on the Retrofit measures for KDX-II KVLS Hull Crack)

  • 최상민;최준호
    • 품질경영학회지
    • /
    • 제45권3호
    • /
    • pp.393-401
    • /
    • 2017
  • Purpose: The purpose of this study is to propose retrofit measures for KDX-II KVLS hull crack, also, enhance safety and quality of ship. Also, this study suggest to how to retrofit about hull crack of the ship and how to improve operability of the ship. Methods: Retrofit measures of KDX-II KVLS hull crack reach a conclusion through global structure analysis and fatigue analysis. Concerned about thermal deformation due to welding around the KVLS, in addition to, verify to safety of KVLS. Results: Based on result of global structure analysis establish retrofit measures for KDX-II KVLS hull crack. Additionally, through fatigue analysis establish final retrofit measures. The results of retrofit measures are allowed both stress level and fatigue life. Conclusion: Retrofit measures for ship hull crack based on global structure analysis and fatigue analysis improves operability and quality of the ship. Especially, KDX-II ship is the best battleship in our country. Considering the importance of KDX-II, this study improves both Korea navy's combat power and ability to carry out the mission.

선박보검과준의 결정요인에 관한 연구 (A Study on Determining Factors of Hull Insurance Rate)

  • 김경건;민성규
    • 한국항해학회지
    • /
    • 제18권4호
    • /
    • pp.59-81
    • /
    • 1994
  • Korean property and liability insurance companies have underwrited hull insurance without proper undrewriting ability. But after April 1996. in case of Korean insurance market being opened the companies have to make hull insurance rate by themselves. Accordingly, in this study, the writer embodies important factors in making hull insurance rate by an empirical survey. In empirical survey, the writer used a questionnaire, 74 proper data was obtained from 96 officers working in making hull insurance rate in 12 Korean property and liablity insurance companies and 24 the foreign companies at home. Reliability was tested by Cronbach's Alpha and a conceptual validity by Factor Analysis. Hypothesis estabilished in this study was tested by Correlation and Multiple Regression Analysis. Results of testing hypothesis are as follows: Firstly, the traits of insurer and the assured influence significantly(P<0.05) on making hull insurance rate. Secondly, expected loss ratio, ship manager, ship's age, insured amount, level of the cost of repairing and salvage, shipowner, period of insurance, level of overseas rating, profit and expense, trading limits, ship's classification, conditions of insurance, and ship's size influence significantly(P<0.05) on making hull insurance rate.

  • PDF

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • 제12권2호
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

수학적 선형의 저항특성 추정 및 선형 최적화에 대한 연구 (Study on the Resistance Prediction and Hull Form Optimization for Mathematical Hull Forms)

  • 민계식;이연승;강선형;한범우
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.1-12
    • /
    • 2004
  • In order to prepare the fuel-economic hull form design method for fine higher-speed ships, systematic theoretical and experimental study has been performed on the relation between hull form characteristics and ship's resistance and on the effect of the optimization of main hull form characteristics. The results of this study provide not only a great insight into the relation between ship's resistance and hull form characteristics, but also a proper direction of the optimization of main hull form characteristics for the improvement of ship's resistance characteristics.

초기 선박 설계시 반체 제도 및 방오 도료에 기인된 속력 구실 평가에 관한 연구 (A Study on Speed Loss Estimation Due to Hull Roughness And A/F Paint in Preliminary Ship Design)

  • 박명규;박수송
    • 한국항해학회지
    • /
    • 제18권2호
    • /
    • pp.159-171
    • /
    • 1994
  • Hull roughness due to corrosions of outer hull and had applications on outer hull paints was analyzed theoretically. It's value which was gainable practically, was studied, and estimated power penalty formular correspon-ding to that value were reviewed. Local roughness penalty and roughness texture penalty that paint manahers in ship yard can easily were compared and studied by dotting actual ships in the issued curves. Losses and benifits of hull roughness & the specification choise of A/F paint which managers of ship maintenance were much interested in have been calculated through actual ships. The paper is illustrating that how much the specification choise and managing of A/F paint have effects on fuel consumption of ship in program. It is urgently required that recent developed antifouling paints of new A/F generation should be adopted to new ship building by big shipping companies in view of the environmental protection and the economical maintenance of ships.

  • PDF

Hull form design for resistance minimization of small-scale LNG bunkering vessels using numerical simulation

  • Pak, Kyung-Ryeong;Song, Gi-Su;Kim, Hee-Jung;Son, Hye-Jong;Park, Hyoung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.856-867
    • /
    • 2020
  • This paper aims to provide the most useful method of determining an optimum LCB position and design direction of fore- and aft-body hull shape for a SLBV. It is known that the SLBV has a lower length-to-beam ratio, larger Cb and simpler stern shape designed for the installation of azimuth thrusters comparing to those of conventional LNG carriers. Due to these specific particulars of SLBV, the optimum LCB position was very different to that of conventional LNG carrier. And various approaches were applied to determine the optimum fore- and aft-body hull shape. The design direction for the optimum hull-form was evaluated as the minimization of the total resistance which includes the wave-making resistance and form-drag with numerical simulation.

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

G/T 340톤급 고속 어업지도선의 선형개발에 관한 연구 (A study on the hull form development of the G/T 340ton class high speed fishery patrol ship)

  • 이귀주;이광일
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.221-226
    • /
    • 1997
  • This study was carried out for the hull form development of G/T 340ton class high speed fishery patrol ship by Chosun University at the Circulating Water Channel cooperatively with Korea Maritime Service. Same size of 15knots class fishery patrol ship was selected as a parent form (Model number : CU-015), and modified fore and after body to be suitable for the operation at 20 knots. To minimize the breaking wave in the vicinity of fore body at high speed zone, high bulb nose and slender fore body hull form was chosen as an initial condition. Meanwhile, to ensure the engine room space keeping high resistance-propulsion performance, U-type stern hull form was developed.

  • PDF