• Title/Summary/Keyword: Ship Hull

Search Result 1,258, Processing Time 0.024 seconds

Development of Hull Thickness Management System for Ship Management System (선박 유지보수를 위한 선체 두께 관리 시스템 개발)

  • Park, Kaemyoung;Lee, Jeong-youl;Lee, Kyungho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders

  • Kim, Do Kyun;Park, Dae Kyeom;Park, Dong Hee;Kim, Han Byul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.531-549
    • /
    • 2012
  • Numerous oil tanker losses have been reported and one of the possible causes of such casualties is caused by the structural failure of aging ship hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This research is about effect on hull girder ultimate strength behavior of double hull oil tanker according to corrosion after Part I: stiffened panel. Based on corrosion data of Part I (time-dependent corrosion wastage model and CSR corrosion model), when progressing corrosion of fourtypes of double hull oil tankers (VLCC, Suezmax, Aframax, and Panamax), the ultimate strength behavior of hull girder is compared and analyzed. In case of the ultimate strength behavior of hull girder, when occurring corrosion, the result under vertical and horizontal bending moment is analyzed. The effect of time-dependent corrosion wastage on the ultimate hull girder strength as well as the area, section modulus, and moment of inertia are also studied. The result of this research will be useful data to evaluate ultimate hull girder strength of corroded double hull oil tanker.

Optimum Design of Ship Design System Using Neural Network Method in Initial Design of Hull Plate

  • Kim, Soo-Young;Moon, Byung-Young;Kim, Duk-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1923-1931
    • /
    • 2004
  • Manufacturing of complex surface plates in stern and stem is a major factor in cost of a preliminary ship design by computing process. If these hull plate parts are effectively classified, it helps to compute the processing cost and find the way to cut-down the processing cost. This paper presents a new method to classify surface plates effectively in the preliminary ship design using neural network. A neural-network-based ship hull plate classification program was developed and tested for the automatic classification of ship design. The input variables are regarded as Gaussian curvature distributions on the plate. Various applicable rules of network topology are applied in the ship design. In automation of hull plate classification, two different numbers of input variables are used. By observing the results of the proposed method, the effectiveness of the proposed method is discussed. As a result, high prediction rate was achieved in the ship design. Accordingly, to the initial design stage, the ship hull plate classification program can be used to predict the ship production cost. And the proposed method will contribute to reduce the production cost of ship.

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

A Study on the Development of the Software of Ship Hull Stress Monitoring System (선체응력 감시시스템의 소프트웨어 개발에 관한 연구)

  • Sim, Il-Hwan;Song, Jae-Uk;Gil, Byeong-Rae;Kim, Jeong-Ryeol;Kim, Chang-Je
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • In the recent years, major ship registers have demanded improved safety on the hull stress of large bulk carriers which are on navigation or cargo handling in harbour. Under these circumstances, a system that monitors hull stress and ship condition is being more and more important. If efficient and appropriate navigational information is given, safety of navigation would be greatly improved. The major ship registers of the globe are investing a great effort on the development of a system that monitors the hull stress of ship. Using this system, information of hull stress and ship motion is given to the users and also the data is stored on the external data storage system simultaneously. Through this study, a software that monitors hull stress was developed. Not only can randomized input-data of the standard hardwares be applied to the system, but also this system can be operated on and applied to real hardware systems.

  • PDF

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

On the effects of hull-girder vibration upon fatigue strength of a Post-Panamax container ship disaggregated by short-term sea state

  • Fukasawa, Toichi;Mukai, Keiichi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.431-441
    • /
    • 2014
  • The effects of hull-girder vibration on the fatigue strength of a Post-Panamax container ship are discussed in the present paper. Firstly, the short-term sea states are categorized according to the occurrence probability of each sea state. Time histories of hull-girder stress in short-term sea states are calculated by means of a nonlinear simulation code of ship response assuming that the hull-girder is rigid and flexible. Then, the calculated stress peaks are processed by the rainflow counting method, where two different counting procedures are used based on the considerations of crack propagation behaviors. Finally, the fatigue damage in life time of the ship in each categorized short-term sea state is estimated by means of Miner's rule. Based on the calculated results, the effects of hull-girder vibrations on the fatigue damage are clarified by disaggregated damage from short-term sea state.

Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

  • Choi, Hee-Jong;Chun, Ho-Hwan;Park, Il-Ryong;Kim, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.225-232
    • /
    • 2011
  • In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 ($C_B$=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

Analysis of Ship Squat in Confined Water Using CFD (전산유체역학을 이용한 제한수로에서의 선박 침하 해석)

  • Shin, Hyun-Kyoung;Choi, Si-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.317-324
    • /
    • 2011
  • When a ship proceeds in confined water, like canal, the water ahead of ship is pushed by hull. This pushed water returns to the side and under the hull, and this returned water will make fluid velocity higher at the side and under the hull, compared to the case in the infinite water depth. Due to the higher velocity, the pressure under the hull will decrease, resulting in the ship drop. This phenomenon is called "ship squat" and ship squat will result in various marine accidents. In this paper, for predicting ship squat, numerical calculation was carried out using commercial CFD code, FLUENT. To confirm wave pattern profile around the ship, VOF(Volume of Fluid) method was applied. The calculated results were compared with other paper's results and empirical methods.