• Title/Summary/Keyword: Ship's stability

Search Result 129, Processing Time 0.021 seconds

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

An Experimental Study on the Effect of Adoption of Special Rudders on Course Stability of a Ship (특수타의 채택이 침로 안정성에 미치는 영향에 관한 실험적 연구)

  • Sohn, K.H.;Kim, J.H.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.27-37
    • /
    • 1997
  • The paper deals with the effectiveness of various special rudders on course stability of a ship. We adopted five types of rudder, such as one normal rudder and four special rudders, which contain two rudders with concave and convex strips on sides respectively, one flapped rudder, and one rudder with end plates on tips. In the circulating water channel, model test was carried out for measuring lift characteristics of the rudders in open water. And various captive model tests were also carried out for measuring the experimental constants related with helm angle and steering in hull-propeller-rudder system. From the test results, the changes in manoeuvring hydrodynamic derivatives due to adoption of normal and special rudders were predicted. Then course stability performances of a ship with normal and special rudders were evaluated and discussed. As a result, it is clarified that the rudder with concave or convex strips and flapped rudder have no effect on course stability, while the rudder with end plates improves course stability with effect. The result in this study is expected to be used usefully when the course stability is in issue and has to be improved without amendment of hull design at initial design phase or after construction of a ship.

  • PDF

The Effect of Wave Pressure on Stability Rubble Mound Breakwater (사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향)

  • Cheong, Gyu-Hyang;Lee, Yong-Dae;Lee, Byong-Moon;Jeong, Sam-Gi;Kim, Keun-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

A Study on the Interactive Grain Stability Calculation (대화형 Grain Stability Calculation에 관한 연구)

  • Lee, S.S.;Lee, K.O.;Kang, W.S.;Yoon, M.T.;Sung, D.K.;Lee, J.C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.102-110
    • /
    • 1997
  • In a shipyard, computer calculation is not frequently used for the grain stability calculation because of large difference between calculation values and real values. Therefore, the necessary calculation process for grain stability is done manually. GUI(Graphical User Interface) is adopted for the convenience of users and interactive data I/O. The hold shape (girder, hold, etc.)needed for calculation are visualized using GLBAX which is a 3 dimensional graphic library. The interface with the ship basic calculation package is also implemented. The aim of this paper is to develop a reliable interactive grain stability calculation program which reduces computational time, and is to computerize the grain stability calculation procedure.

  • PDF

Underwater Drone Development for Ship Inspection Part 1: Design, Production and Testing (선박 검사용 수중 드론 개발 Part 1: 설계·제작 및 시험)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Jeong, Kyeong-Teak;Choi, Hyun-Deuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.38-48
    • /
    • 2020
  • In order to inspect the existing or newly constructed ship's hull, a professional diver directly inspects the ship's bottom of the water. However, since it is a work done by people, there are many dangers such as human casualties and crashes. To solve this problem, it is necessary to develop underwater drones for ship inspection for visual inspection. The technology applied to underwater drones, the use and manufacturing process of each component, and the method of manufacture such as firmware development were described, and the difference was compared by measuring the drone's own driving ability and driving ability using crawler under water, and the location tracking device test confirmed the error from the actual location. It is estimated that the use of underwater drones produced through this research will prevent human casualties and achieve economic effects and stability.

A study on the Improvement of control performance of Auto Steering System by Fuzzy Scheme (퍼지기법에 의한 자동조타기의 제어성능개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2671-2674
    • /
    • 2005
  • Auto Pilot System is the device for course keeping or course altering to ship's steering system. The purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modem control theories are being used widely in analyzing and designing the ship system. Though P.I.D type auto pilots are widely used in ships, the stability and the adjusting meyhods are not clarified. In this paper the authors proposed auto pilot system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investi gated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

Electric Power System Design and Analysis for Drilling Rigs

  • Kim, Chul-Ho;Kim, Yoon-Sik;Jung, Hyun-Woo;Ryu, Seung-Nam;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.942-947
    • /
    • 2012
  • As electricity has been used in ship's propulsion, it is necessary to increase the system voltage and current for the electrical distribution system. So it is required to improve the system safety and efficiency, the power stability, the efficiency of the generation through various analysis of ship's electric power system. In this paper, the electrical service reliability of the power distribution system of semi submersible drilling rigs has been analysed and discussed using ETAP.

A study on the Improvement of control performance of Auto Steering System (자동조타기의 제어성능개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.114-117
    • /
    • 2005
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The Purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Fuzzy Logic Controller. In the fuzzy control the things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the fuzzy logic control was more efficient than the conventional system.

  • PDF

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

A Study on the Relationship between Ship Stability and Maneuverability Using Free Running Model Experiments (자유항주 모형실험에 의한 선박의 복원성능과 조종성능 관계 연구)

  • Choe, Bo-Ra;IM, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.353-360
    • /
    • 2016
  • The International Maritime Organization (IMO) has issued international standards for ship maneuverability and stability. These have been established to improve marine safety and influence the direction of research. The previous literature has been researched, but there are few studies on the relationship between ship maneuverability and stability. This study carried out a fundamental experiment to quantitatively evaluate that relationship. Radius of turn and maximum heel angle depending on changing were analyzed through a turning test using a free running model ship. The test results show the change tendency of decreasing turn radius and increasng maximum heel angle according to a GM decrease. A rough estimate equation is proposed to predict the change tendency on radius of turn and angle of maximum heel as GM decreases. Many ships can suddenly experience reduced GM due to unexpected reasons during sailing. The results in this study can be used as fundamental data to estimate a ship's tactical turn diameter and variable heel angle for steering as GM decreases.