• Title/Summary/Keyword: Ship's collision

Search Result 236, Processing Time 0.024 seconds

A Study on the Development the Maritime Safety Assessment Model in Korea Waterway

  • Park, Young-Soo;Kim, Jong-Sung;Aydogdu, Volkan
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.567-574
    • /
    • 2013
  • Although Korea coastal area has the increasing potential marine accident due to frequent ship's encounter, increased vessel traffic and large vessel, there is no specific model to evaluate the navigating vessel's risk considering the domestic traffic situation. The maritime transport environmental assessment is necessary due to the amended maritime traffic law. However, marine safety diagnosis is now carried out by foreign model. In this paper, therefore, we suggest a domestic traffic model reflecting the characteristics of korea coastal area and navigator's risk as we named PARK(Potential Assessment of Risk) model. We can evaluate the subjective risk by establishing the model and model output into maritime risk exposure system. To evaluate this model's effectiveness, we used ship handling simulation and applied, analyzed collision accident which occurred in korea coastal area. And also, we applied integrated to an ECDIS program for monitoring traffic risk of vessels with real time based AIS data and apply to evaluate traffic risk in busan harbor waterway. As a result, we could evaluate busan harbor waterway risk effectively.

A Study on Course Stability of Towed Damaged-ship under Wind Pressure (풍압력하에서 피예항중인 손상선박의 침로안정성에 관한 연구)

  • K.H. Sohn;Y.K. Kim;S.G. Lee;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.46-56
    • /
    • 2000
  • This paper is related with one of safety plans to rescue a damaged-ship whether by collision, grounding or internal accident. We discuss the problem on course stability of damaged-ship while towed under severe wind pressure. The characteristic equation to assess the stability on course, is derived from sway and yaw coupled motion of towing and towed vessels with wind effect. Through the numerical calculation on course stability of towing and towed vessels system, the relationship between the course stability of a towed damaged-ship and wind direction or towrope length, is clarified with the parameters of weather and damage conditions.

  • PDF

A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat (천수섬에서 어선 정박을 위한 자동도선시스템에 관한 연구)

  • Lee, Kwi-Joo;Benilov, Alexander Y;Sin, Young-Kuwn;Park, Myung-Kyu;Kim, Kyoung-Hwa;Park, Weon-Me
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Generally a ship in a port or canal is guided by tugboat(s), while the ship engine(s) and steering mechanism idle. The shortcomings of this method are insufficient in course keeping ability, danger of collision with waterside structures, time-consuming preparation for tugging, as well as the need to maintain tugboats. A new technology for ship guiding, based on the physical principle of interaction of a solid body with aerated liquids has been developed [1]. Model tests were carried out for the verification of system at slow speed by engine operating conditions and with an idle steering. The developed device has been proved to keep the ship on course safely.

A Study on Synthetic Dataset Generation Method for Maritime Traffic Situation Awareness (해상교통 상황인지 향상을 위한 합성 데이터셋 구축방안 연구)

  • Youngchae Lee;Sekil Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.69-80
    • /
    • 2023
  • Ship collision accidents not only cause loss of life and property damage, but also cause marine pollution and can become national disasters, so prevention is very important. Most of these ship collision accidents are caused by human factors due to the navigation officer's lack of vigilance and carelessness, and in many cases, they can be prevented through the support of a system that helps with situation awareness. Recently, artificial intelligence has been used to develop systems that help navigators recognize the situation, but the sea is very wide and deep, so it is difficult to secure maritime traffic datasets, which also makes it difficult to develop artificial intelligence models. In this paper, to solve these difficulties, we propose a method to build a dataset with characteristics similar to actual maritime traffic datasets. The proposed method uses segmentation and inpainting technologies to build a foreground and background dataset, and then applies compositing technology to create a synthetic dataset. Through prototype implementation and result analysis of the proposed method, it was confirmed that the proposed method is effective in overcoming the difficulties of dataset construction and complementing various scenes similar to reality.

The Ergonomic Layout of Ship's Bridge Panels using the Mathematical Programming (수리모형을 이용한 선박 항해기기 패널의 인간공학적 배치)

  • Jang, Jun-Hyuk;Kim, Hong-Tae;Sim, Joung-Hoon;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.251-257
    • /
    • 2011
  • When designing a ship, ergonomic considerations are crucial when minimizing a navigator's fatigue due to the burden of work, and to appropriately operate the navigational equipment for each given situation by helping the operator to understand the surroundings as well as the physical functions of the ship. However, insufficient consideration of ergonomic elements in the actual design of ship Bridges is lowering the performance of safe navigation and allows for the possibility of operation or readout errors. Consequently, these errors lead to an increase in maritime accidents. Therefore, this study conducted a usability evaluation on the importance of and the usage frequency of navigational equipment, their influence on actual navigation, and the possibility of error upon operation or readout between training ship officers, to derive an optimized layout that includes the consideration of ergonomic factors for on-Bridge navigational equipment, which are currently arranged differently according to their type or size. The optimized layout of on-Bridge navigational equipment was carried out based on the evaluation results, using the Lingo program. Through the process of optimization, revised layouts of on-Bridge navigational equipments(control and display device) were suggested, considering emergency situations(ship collision, stranding, fire and explosion, sinking, etc.) during navigation.

An Analysis of Future Ship Operation System under the e-navigation Environment

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • It is clearly understood that e-navigation is beneficial to prevent collision and grounding of ships. The purpose of this study is to define and present a future ship operation system under the e-navigation environment in order to provide clear direction for the design of Korean e-navigation system. The future ship operation system consists of shipboard navigational system, shore supporting system and maritime communication system. To achieve the objectives of this study, the ship operation system was discussed separately into SOLAS ships and non-SOLAS ships in this study. In SOLAS ships, mariners become a system manager, choosing system presets, interpreting system output, and monitoring vessel response. In small ships and fishing vessels, mariners may enjoy their navigation by using the automatic tracking of ship's position on the portable electronic chart display. The improved bridge design, integrated and harmonized navigational system and single window reporting will reduce significantly the administrative and physical workload of mariners. Mariners can concentrate their attention more on navigational duty under the e-navigation environment. To build an effective Korean e-navigation system, the essential navigational functions and e-navigation services for small ships and fishing vessels must be identified and developed taking into account user needs.

Collision Behavior Comparison of Offshore Wind Tower as Type of Support Structure (지지구조의 형식에 따른 해상풍력타워의 선박충돌거동비교)

  • Lee, Gye-Hee;Kwag, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2022
  • The collision behaviors of the tripod and jacket structures, which are considered as support structures for offshore wind towers at the Southwest sea of Korea, were compared by nonlinear dynamic analysis. These structures, designed for the 3 MW capacity of the wind towers, were modeled using shell elements with nonlinear behaviors, and the tower structure including the nacelle, was modeled by beam and mass elements with elastic materials. The mass of the tripod structure was approximately 1.66 times that of the jacket structure. A barge and commercial ship were modeled as the collision vessel. To consider the tidal conditions in the region, the collision levels were varied from -3.5 m to 3.5 m of the mean sea level. In addition, the collision behaviors were evaluated as increasing the minimum collision energy at the collision speed (=2.6 m/s) of each vessel by four times, respectively. Accordingly, the plastic energy dissipation ratios of the vessel were increased as the stiffness of collision region. The deformations in the wind tower occurred from vibration to collapse of conditions. The tripod structure demonstrated more collision resistance than the jacket structure. This is considered to be due to the concentrated centralized rigidity and amount of steel utilized.

A Study on the Development of Ship's Passage Risk Assessment Simulator (선박항로 위험도 평가 시뮬레이터 개발에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Accidents between ships occur frequently at the traffic congestion area. Once a maritime accidents occur, it is likely to end up with critical damaged accidents. This paper develop a simulator for assessing quantitative risk based on statical maritime traffic data and realtime traffic distribution. Ship's passage risk assessment simulator consist of import of division of passage data, traffic distribution analysis and passage risk assessment analysis. Maritime traffic data of WANDO waterway apply to simulator for calculation of quantitative risk rate of waterway.

Prediction of Ships' Bow Structural Damage during Collisions (충돌시 선수구조의 손상추정에 관한 연구)

  • P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.92-102
    • /
    • 1992
  • Prediction of energy absorption for bow structure is important for a design of protective structures against collision. For the crushing behaviour of basic element of energy absorption, the plastic mechanism method is applied. The ship's crushing strength of bow section is obtained by summing the energy dissipated in all individual elements. The theoretical predictions are compared with experimental results for ship's bow models published with experimental results for ship's bow models published in the references, and it is observed that the present prediction method of crushing strength correlates well with the experimental results.

  • PDF

Analysis of the working characteristics of the skipper and risk factors of marine accident in Korea coastal composite fishing vessels (연안복합어선 선장의 업무 특성과 해양사고 위험요소에 대한 분석)

  • KIM, Min-Son;HWANG, Bo-Kyu;CHANG, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.152-161
    • /
    • 2019
  • This research carried out a study on the job characteristics of the skipper of the coastal composite fishing vessels in order to find a way to prevent the ship collision caused by the highest human error among the marine casualty of fishing boats. Video observation was used as the research method in which six CCD cameras were installed on the vessel to collect image data and data extracted from the image were analyzed to derive the results of the functional activity of skipper according to the fishing operation process of experimental fishing vessel. The results are as follows. The working process of the experimental fishing vessel consisted of navigation for fishing ground, setting line, waiting for hauling line, hauling line and navigation to homeport. In these processes, the skipper was performing watchkeeping in the wheelhouse in which he carried out a single task, a dual task that performed two tasks simultaneously, and a triple task that performed two or more tasks simultaneously. In addition, one of the risk factors causing the collision was a no watchkeeping in the wheelhouse for navigating for fishing ground, waiting for hauling line, and hauling line at 25.4%, 64.6% and 0.3%, respectively among the marine casualty while drowsiness caused 1.2% of the marine casualty in navigating for fishing ground. Concurrent tasks that simultaneously perform two or more tasks that can overlook any other important duties while carrying out watchkeeping in the wheelhouse include 51.3% of navigation for fishing ground, 81.9% of setting line, 19.0% of waiting for hauling line, 87.9% of hauling, and 88.7% of navigation to homeport. The above concurrent tasks yielded an average of 66.1%. Experimental fishing vessels are required to focus on ship handling operations related to fishery operations, and the skipper is assigned more activities and attention to fishery related tasks. Therefore, it is considered desirable to build a collision prevention system that is appropriate to the characteristics of the skipper's work, escaping from transferring the responsibility of ship collision to the skipper completely.