• Title/Summary/Keyword: Ship's accident

Search Result 232, Processing Time 0.022 seconds

A Study on the Analysis and Prevention of the Human-related Marine Accidents (인적 요인을 중심으로 한 해양사고 분석 및 예방 연구 (예부선 사고사례를 중심으로))

  • Kim, Hong-Tae;Na, Sung
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.27
    • /
    • pp.25-36
    • /
    • 2009
  • Despite the development of the various navigational equipment, such as GPS, ARPA, ECDIS, AIS, VDR, and hull monitoring system, marine accidents are still a leading concern in shipping industry. For all accidents over the reporting period, approximately 60 to 80% of the accidents was involved in human error. It means that in each case, some events which were associated with human error initiated an accident, and those failures of human performance led to the failure to avoid an accident or mitigate it's consequences. However, the improvement and the effort on the maritime human error are still limited in an elementary step. The objective of this paper is to propose a modified Human Factors Analysis and Classification System (HFACS) model in order to analyse the collision accidents of tug-barge ship.

  • PDF

Cause Investigation for the Flooding and Sinking Accident of the Ro-Ro Ferry Ship (로로 여객선의 침수 및 침몰사고 원인규명)

  • Chung, Young-Gu;Lee, Jae-Seok;Ha, Jung-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.264-274
    • /
    • 2020
  • The Ro-Ro ferry ship capsized and sank to the bottom of the sea because of the rapid turning for several reasons, such as lack of stability due to the center of gravity rise from the extension and rebuilding of the stern cabin, excessive cargo loading, and shortage ballast, poor lashing, etc. The purpose of this study was to investigate and analyze the cause of the ship's rapid flooding, capsizing, and sinking accident according to rapid turning scientifically and accurately using the Fluid-Structure Interaction( FSI) analysis technique. Several tests were conducted for this cause investigation of the flooding and sinking accident correctly and objectively, such as the realization of the accurate ship posture tracks according to the accident time using several accident movies and photos, the validation of cargo moving track, and sea water inflow amount through the exterior openings and interior paths compared with the ship's posture according to the accident time using the floating simulation and hydrostatic characteristics program calculation, and the performance of a full-scale ship flooding·sinking simulation.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Correlation Analysis of Cause factor through Ship Collision Accident, and Cause factor Analysis through Collision Time (선박 충돌사고의 원인요소 간 상관관계 및 충돌시간에 따른 원인요소 분석)

  • Youn, Donghyup;Shin, Ilsik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2017
  • Enlargement and speed-up of a ship and diversification of ship's type have served to greatly increase the importance of marine transport means. It's reported that accident occurrence frequency of collision is high next to engine damage among the ship accident types, and that the accident ratio according to human factors is also high. In addition, ship accidents come to occur caused by complex cause factors rather than a sole cause factor, it is necessary to investigate the cause factors through the written verdict. This study proposed the cause factors of collision ship accident on the basis of human factors in collision ship accident among the written verdicts provided by the Korean Maritime Safety Tribunal, and inquired into the cause factor and effect through the correlation analysis of accident occurrence factors. Also, this study predicted the collision accident through analyzed the major cause factor of the occurrence at the zero minute when collision on the basis of the time taken from the time point of detecting collision of ships to the time point of collision occurrence. This study used commercial software-Statistical Package for Social Sciences (SPSS Ver21.0) to do correlation analysis. For time analysis, this study analyzed the cause factor and time by analyzing the time taken from the time point of detected ships to the time point of collision occurrence on the basis of the written verdicts. The study analysis showed that there were many cases of collision ship accidents occurrence caused by more than two sorts of cause factors, and that the case (zero minute) where there is no time to spare for collision avoidance accounted for 36.1 %, and negligence in guard or surveillance of the other ship, and sailing while drowsy, or drinking was a contributor to an accident. Poor watch keeping is very strong relationship with pool ready for sail.

Implementation Techniques for the Seafarer's Human Error Assessment Model in a Merchant Ship: Practical Application to a Ship Management Company (상선 선원의 인적과실 평가 모델 구축기법: 선박관리회사 적용 실례)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.181-191
    • /
    • 2009
  • In general, seafarer's human error is considered to be the preponderant muse for the majority of maritime transportation accidents in a merchant ship. The implementation techniques for Human Error Model (HEM) to assess possible accident risk by deck officers including captain, chief officer, second mate and third mate are described in this study. The scope of this work is focused to 642 deck officers in the ship management company with 130 vessels. At first, HEM can be constructed through the statistical analysis and expert's brainstorming process with human data to 642 deck officers. Then the variables $\upsilon$ for the human factors, the evaluation level EP($\upsilon$) for $\upsilon$, the weight $\alpha$ of $\upsilon$, and the title weight $\beta$ of each deck officers can be decided. In addition, through the analysis of ship's accident history, the accident causation ratios by human error ${\gamma}_H$ and by external error ${\gamma}_B$ can be found as 0.517(51.7%) and 0.483(48.3%), respectively. The correlation coefficients to $\upsilon$ are also shown significant for a 95% confidence interval (p < 0.05) for each coefficient. And the validity of HEM is also surveyed by the analysis of normal probability distribution of risk level RL to each deck officer.

A Study on the Navigation Data Transmission-Management System of a Small Vessel (소형선박의 항행정보 전송관리시스템에 대한 연구)

  • 조학현;최조천;최병하;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.191-200
    • /
    • 2000
  • The marine accident is being highlighted as a serious worldwide problem for the guard station of human safety and the protection of marine environment pollution. Especially, the GMDSS is operated as a international rule for the safety of a large scale ship, but the small size ship's management is required a adaptive national rule because of the complex condition of national circumstance. This study is motivated to develop a ship's position tracking system combined with GPS information for VTS and control the ship navigation, velocity and longitude etc.. In Part of Navigation Data Transmission is GPS data transmission whih ship's ID using microprocessor and TX speed translation for flexibility with 4800∼2400 [bps]. Results show that the our system for data transmission using microprocessor is useful tool in maritime transmission as SSB used the main TX method of small ship and has a cost competitive power. Therefore, we will expected cost and technical competitive power compared to AIS. But those systems are still remained the unsolved problem for protection from marine accident.. Finally, we examined the semi-actual receiving state on simulated sailing in the around sea of Mok-Po harbor.

  • PDF

A Proposal of Bridge Design Guideline by Analysis of Marine Accident Parameters occurred at Bridges Crossing Navigable Waterways (항만횡단 해상교량의 해양사고 관련 인자 분석을 통한 교량설계안 제안)

  • Park, Young-Soo;Lee, Yun-Sok;Park, Jin-Soo;Cho, Ik-Soon;Lee, Un
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.743-750
    • /
    • 2008
  • Recently Bridges crossing waterway are constructed in navigable waterway, so marine accidents near bridges navigable waterway often occurred bemuse that has affect dangerous element for. This paper analysed the necessary environmental factors to navigate safely near bridges and how to set up the environmental factors. Marine accidents elements occurred near bridges relate to span of bridge, size of navigating ship, length of straight way and traffic volume except mistake of mariners. As results of marine accident parameter analysis, Span of bridge is necessary more than 300m at least based on marine accident's analysis, and in case of more than ship's Length 150m, span of bridge is necessary more than 500m, $3{\sim}4L$(L; Ship's Length). Length of straight way before bridge is necessary more than 8L to minimize the marine accident.

The Relation between Human Behavior and Safety in the Collision Avoidance Situation

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.611-618
    • /
    • 2003
  • It can be said that the relationship between the maneuvering ability of operators and the navigational environment affects the safe degree of navigation in the collision avoidance situation. In order to reduce the occurrence probability of accident and to maintain the safety, it is necessary to clarify the relationship between human behavior and navigational environment. In this study, therefore, we analyzed and discussed the relationship between the maneuvering characteristics and the safety focused on human behavior as a fundamental factor of marine accidents using ship handling simulator and questionnaire. As a result, we concluded that navigational environment changes variously and the maneuvering ability of operators also varies with the navigational environment, and the ship handling characteristics strongly affect the occurrence probability of accident.

Development of Quantitative Risk Assessment Methodology for the Maritime Transportation Accident of Merchant Ship (상선 운항 사고의 양적 위기평가기법 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.9-19
    • /
    • 2009
  • This paper describes empirical approach methodology for the quantitative risk assessment of maritime transportation accident (MTA) of a merchant ship. The principal aim of this project is to estimate the risk of MTA that could degrade the ship safety by analyzing the underlying factors contributing to MTA based on the IMO's Formal Safety Assessment techniques and, by assessing the probabilistic risk level of MTA based on the quantitative risk assessment methodology. The probabilistic risk level of MTA to Risk Index (RI) composed with Probability Index (PI) and Severity Index (SI) can be estimated from proposed Maritime Transportation Accident Model (MTAM) based on Bayesian Network with Bayesian theorem Then the applicability of the proposed MTAM can be evaluated using the scenario group with 355 core damaged accident history. As evaluation results, the correction rate of estimated PI, $r_{Acc}$ is shown as 82.8%, the over ranged rate of PI variable sensitivity with $S_p{\gg}1.0$ and $S_p{\ll}1.0$ is shown within 10%, the averaged error of estimated SI, $\bar{d_{SI}}$ is shown as 0.0195 and, the correction rate of estimated RI, $r_{Acc}$(%), is shown as 91.8%. These results clearly shown that the proposed accident model and methodology can be use in the practical maritime transportation field.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.